

同期回転惑星の数値計算

石渡正樹^(1,2), 阿部豊⁽³⁾,林祥介^(2,4), 中島健介⁽⁵⁾ 倉本圭^(1,2),高橋芳幸^(2,4), 成田一輝⁽¹⁾

(1) Hokkaido University (2) Center of Planetary Science (CPS)(3)University of Tokyo (4) Kobe University (5) Kyushu University

惑星大気研究会 2015年03月06日

地球と似た系外惑星の気候は?

同期回転惑星の GCM 実験

- GCM 計算
 - Joshi et al. (1997): CO2 atmosphere, $\Omega = 1/16\Omega E$
 - Joshi (2003): aqua planet, $\Omega/\Omega E=1$
 - Merlis and Schneider (2010): aqua planet, Ω/ΩE=1/365~1
 - Edson et al. (2011):
 aqua planet, Ω/ΩE=1/100~1
 - Heng and Vogt (2011):Gliese581g
 - Noda et al. (2012): aqua planet, $\Omega/\Omega E=0 \sim 3$, Solar constant is also changed.
 - Yang et al. (2013) aqua planet, Ω/Ω E=1/37, , Solar constant is also changed.
- ここでは
 - ΩとSをふった同期回転惑星の気候の多様性を探る実験
 - GJ667Ccを想定した計算

モデル

- 大気大循環モデル: dcpam5
 - http://www.gfd-dennou.org/library/dcpam/
- 多様な惑星を同一の枠組みで

・基礎方程式・差分化法

– 基礎方程式:3次元球殻中のプリミティブ方程式

- 差分化:水平方向スペクトル法、鉛直方向差分

- **放射**
 - 灰色放射スキーム
 - 地球放射スキーム
 - 水蒸気、CO₂、雲水の吸収と散乱を考慮 Chou and Lee (1996), Chou et al (2001)
 - ・中心星からの短波放射は太陽のものと同じ
- 積雲対流
 - Relaxed Arakawa-Schubert (Moorthi and Suarez, 1992)
- 地表面フラックス: Beljaars and Holtslag (1991)
- 鉛直乱流拡散: Mellor and Yamada (1974) level2.5
- ・ 地表面: 熱容量 0の海面、海洋の熱輸送無し
- ・ 簡単雲モデル
 - 移流、乱流混合、生成、消滅を考慮

 $\partial q \downarrow c / \partial t = -v \nabla v - \sigma \partial q \downarrow c / \partial \sigma + F \downarrow turb + S \downarrow c + q \downarrow c / \tau \downarrow LT$

S↓c:雲水の生成 -大規模凝結で計算される凝結量 -RAS スキームで計算される雲頂 からのデトレイン量

q\c / τ\LT : 雲水の消滅 地球設定計算*(T42L26)*でチューニ ング すると*τ\LT*=1500sec

- 目的
 - 昼夜間熱輸送、大気循環 場のΩ依存性の調査
- 実験設定
 - 灰色放射・雲無し実験
 - Ω=0,, 1.0 (16 通り)
 - $-S=1380W/m^{2}$
 - 解像度:T21L16
 - 地球放射・雲有り実験
 - Ω=0.0, 0.1, 0.5, 1.0
 - $-S=1366W/m^{2}$
 - 解像度:T42L26
 - 雲の消滅時間: *τ↓LT*=0, 1.5×10³, 1.5×10⁶sec

灰色放射・雲無しの場合

Noda et al. (投稿準備中)

•表面温度(1000日平均)

longitude

• 表面温度(スナップショット)

昼夜間熱輸送(灰色放射・雲無し)

Noda et al. (投稿準備中)

・昼夜間の総熱輸送量はΩによらない

非灰色放射・雲有りの場合 S=1366W/m² Ω=1

Ω=0.5

Ω=0.0

昼夜間熱輸送

S=1366W/m²

夜半球熱収支(1年平均)

• やっぱり、昼夜間熱輸送量はΩによらない

- 目的
 - 暴走温室状態の発生条件
 の考察(まだ途中)
- 実験設定
 - $-S=1366-2200W/m^{2}$
 - -Ω=1.0
 - 雲の消滅時間: *〒↓LT* =0, 1.5×10³sec
 - 解像度: T42L26
 - 積分時間:3 地球年

結果

	同期回転 (雲無し)	地球設定 (雲無し)	同期回転	地球設定
S=1366	0	0	0	0
S=1600	0	0	0	0
S=1800	×	×	0	
S=2000			0?	
S=2200			×?	

O:統計的平衡状態, ×: 暴走温室状態

暴走温室状態

表面

温度

OLR

$S=2200W/m^{2}$

 $\tau I T = 1.5 \times 10^{10} 2^{2 \times 10^{-10}}$

特定の惑星を想定したGCM実験

成田君(北大)による卒業研究

- 目的
 - GJ667Cc の計算 Earth Similarity Index が大きい
 - -風化率、海の凝結時間の 大雑把な見積もり
- 実験設定
 - -太陽定数:1230W/m²
 - -Ω:2.59×10*î*-6 sec⁻¹(周期28日
 - R=9938km, g=15.3 m/s²,
 Ps=3.8 atm
 - 地表面アルベド:0.15

表面温度分布と降水分布

恒星直下点からの距離(×10⁷ m)

恒星直下点からの距離(×10⁷ m)

3.5

GJ667Ccにおける風化率の見積もり

 炭素循環における風化率 (Walker et al, 1981)

 $W \sim Rain(P \downarrow C O \downarrow 2) \uparrow 0.3 \exp(T \downarrow s - 285/17.7)$

W: 風化率	Ts: 表面温度
Rain: 降水	P _{co2} : CO2 分圧

• 見積値

設定	風化率(mol/yr)	[CO ₂] _{atm} /(風化率) [y]
]GJ667Cc	5.8×10 ¹³	1.1×10 ⁴
Earth	1.0×10 ¹³	1.7×10 ⁴

 (惑星内部から大気へのCO₂脱ガス率)∞(惑星の体積) と考えると、脱ガス率は3.8×10¹³ mol/yr
 風化率の見積もり値の方が大きいので、大気中のCO₂量 は減少するのだろう(地球よりも低い値でバランスする)

海洋凝結の時間スケール

- 表層の水が夜半球に氷として 凝結する時間スケール
 - -海洋質量は地球の3.8倍と仮定
 - 凝結時間スケール~ *Rain-Evap* (s< 273K, Rain-Evap > 0となる領域で)

• 推定值

©newton press

- *Rain−Evap/M↓ocean* =5.13×10721 kg /2.74×10714 kg/y ~2.0×1077 y
- この値はおそらく下限値。水が少なくなれば、風
 化率が減少する?温室効果も強くなる?

まとめ

- ・ 同期回転設定GCM でパラメータ実験を実施中
 - 暴走温室状態が発生する太陽定数
 は地球設定の場合とほとんど同じ?
 (まだ実験中)
 - 昼夜間熱輸送はΩによらない? とすると暴走温室発生条件もΩに よらない?
 - 同期回転惑星の風化率の大きさ は地球程度?(ものすごく荒い見 積もりだけど)昼半球における高温 多雨が効いている。もしかして、 昼夜間のコントラストは長期の気候の 安定化に影響するかも

昼夜間熱輸送量のS依存性

• 夜半球の熱収支

 $(W m^{-2})$

O:OLR(=昼夜総熱輸送) ▼:(<mark>顕熱輸送量</mark>)/2*πR1*2 ★:(潜熱輸送量)/2*πR1*2

• OLR 水平分布

暴走温室状態

S=2200W/m²

CONTOUR INTERVAL = 5.000E+00 180 225 270 315

東西風σ=0.1

CONTOUR INTERVAL = 1.500E+01 45 90

longitude

(degree_east)

 $T_{1,0} = 1.5$

300 350 (degree_east)

250

-5 2e-5 2.5e-5

東西風(σ=0.1)

-60

0

60

120

表面気圧時間変化

90000 93000 96000 99000102000 05000

S=1366W/m²

太陽定数増大時の状態

S=1366W/m²

S=1800W/m²

1.46 Re の場合の計算結果 熱フラックス時間発展 表面温度分布(370日平均) ÷., E 20 \$ 160 240 50 200 緯度 外向き赤外放射 熱フラックス 80 -50 40 0 50 250 隆永 e_north) 600 **水**の升 100 180 200 600 1000 経度 時間(日)

240

300

350

(degree_east)

180

120

雲水分布(370日平均)

半径を大きくしていくにつれて夜半球の高緯度側 で温度が下がっていく

赤道断面における温度分布と水平 風の特徴

• 1.46 Re の場合

●高温域が夜半球側に伸びる.
 ●夜半球では下層での温度が低いまま

 ●夜半球では極渦ができる.
 ●夜半球高緯度の温度は低 緯度高緯度間の混合具合 によって決まると思われる.

惑星半径を変えた場合の結果

赤道断面における温度分布 対流圏界面(σ=0.2)における水平風

夜半球の平均表面温度と熱輸送

半径を大きくするにつれて平均温度は下がる. 同時に夜半球への熱輸送も減っている.

まとめ

熱の移流

混合

360

- 同期回転惑星で半径を変えた計算を行った.
- ・ 全体的な傾向
 - 夜半球の高緯度側に低温域
 - Heng and Vogt (2011)には出てない
 - 昼夜熱輸送は主に赤道域で 起こる.
 - 夜半球内では赤道域と極域⁰ での混合が重要.

・ 半径が大きくした場合 -90 <li

- 極渦が強化: 混合が弱くなる.
- 夜半球の表面温度は半径が大きくなるにつれて減 少する.

2.0 Re

4.0 Re

(day

いずれも200日ほどで統計的平衡 状態に達した.

対流圏界面付近(σ=0.2)での水平風

370 日平均.

0.5 Re

1.0 Re

経度

4.0 Re

8.0 Re

熱源からの放射にともなう波が見え,半径を大 きくすると強くなる

Sigma=0.8 での水平風

表面気圧時間発展

1.0 Re

1.46 Re

2.0 Re

4.0 Re

900

950

1000

1050

(day

16.0Re

4.0 Re

経度

4.0 Re

8.0 Re

栓度 2.0 Re

CONTOUR INTERVAL = 1.000E+01

0	40	80	120	160	200

夜半球への温度輸送

各惑星半径において同じ温度(230 K, 225 K))が夜半球へどの程度しみだせるかを調べた.

惑星半径 (Re)	星半径 230K の熱 夜半球へ到達で e) が到達でき きた昼夜半球境 た経度 界(経度180度)か らの実距離		惑星半径 (Re)	225K の熱 が到達でき た経度	夜半球へ到達でき た昼夜半球境界(経 度180度)からの実 距離 (km)
		(km)	1.0	-	全球
1.0	240	6700	1.46	-	全球
1.46	270	14700	2.0	320	31276
2.0	260	17872	4.0	240	26808
4.0	190	4468	8.0	230	44680
8.0	220	26808	16.0	200	35744
16.0	180	0			
					1 N

有意な相関性は見られない。 同じ温度で比べてもあまり意味がなさそうだ.

重力加速度の影響

- 重力加速度の影響は惑星半径に比べて小さい

赤道断面における比湿

4.0 Re

8.0 Re

16.0Re

温度分布との相関がある

赤道断面:東西風速

-60 0 60 120

夜半球に強い東西風が 吹いている

赤道断面における温度分布

1.46 Re

8.0 Re

100

50

150

longitude

CONTOUR INTERVAL = 1.500E+01

250

350

(degree_east)

midpoints

layer

ď

0.8 outous

0.4

0.6

 $(1)^{0}$

temperature

2.0 Re temperature

16.0Re

temperature

CONTOUR INTERVAL = 1.500E+01 恒星直下点では30 K ほど温度が高くなって いる.経度方向の輸送が弱くなっているよう に見える.

4.0 Re temperature

