# 「はやぶさ2」人工クレーター形成 実験とクレータースケール則

#### 荒川政彦 神戸大学大学院理学研究科 地球惑星科学専攻

### 2014年12月3日打ち上げ





## はやぶさ2

- C型小惑星:地球近傍小惑星1999JU3を目指す
  - 2014年12月3日 打ち上げ
  - 2018年到着, 2019年離脱, 2020年地球帰還
- 3箇所からのサンプルリターン
  - 水・有機物を含む試料の採取:生命起源物質の研究
- 小型搭載型衝突装置(SCI)で人エクレーターを形成
  - 宇宙衝突実験:小惑星上で惑星形成過程で起きた天体衝突
     を再現する
  - 人エクレーターの形成過程を分離カメラ(DCAM3)で観測
  - 地下試料を採取:宇宙風化や太陽放射による熱変成をを受けていない新鮮な試料

4

# 小惑星の位置づけ

















15年1月7日水曜日

# 惑星形成過程の記録はどこに?

#### 小惑星に注目!

- 火星と木星の間の軌道に多く存在する
   小天体の総称: < 1000km</li>
- 小惑星の研究 → missing linkを繋ぐ

太陽系天体の多様性と衝突現象



15年1月7日水曜日





15年1月7日水曜日



## 小惑星探査

- 日本の小惑星探査
  - 「はやぶさ」によるサンプルリターン
    - S型小惑星「イトカワ」
  - 「はやぶさ2」によるサンプルリターン
    - C型小惑星「1999JU3」



## 小惑星探査

- 日本の小惑星探査
  - 「はやぶさ」によるサンプルリターン
    - S型小惑星「イトカワ」
  - ●「はやぶさ2」によるサンプルリターン ● C型小惑星「I999JU3」

# はやぶさ2

#### 「はやぶさ2」のサイエンステーマ



#### 探査対象小惑星の特徴

#### 2014年4月の時点での情報

| 名称           | :      | まだ名前は無い                      |
|--------------|--------|------------------------------|
| 確定番号         | :      | 162173                       |
| 仮符号          | :      | 1999 JU3                     |
|              |        | 1999年5月に発見された小惑星             |
| 大きさ          | :      | 約900 m                       |
| 形            | :      | ほぼ球形                         |
| 自転周期         | :      | 約7時間38分                      |
| 自転軸の向き       |        | : 正確な推定が困難                   |
| 反射率          | :      | 0.05 (反射率が1に比べ<br>て小さい=黒っぽい) |
| タイプ          | :<br>1 | C型(水・有機物を含む物質<br>があると推定される)  |
| 軌道半径<br>公転周期 | :      | 約1億8千万km<br>約1.3年            |

#### 小惑星1999 JU3の軌道



#### イトカワと1999 JU3の大きさ







はやぶさ2概観









#### 直列的なミッションシーケンス, さまざまな運用モード



- 地球出発
- IES試運転
- IES動力航行開始



・ 地球スイングバイ





ホームポジション維持
 近接観測による小惑星
 グローバルマッピング





・合運用



・降下訓練・降下運用
・タッチダウン/サンプリング

- 衝突機運用(クレーター生 成)
- ・ デブリ/イジェクタ退避運用





・ 地球リエントリ

神戸大学

# ●小型搭載型衝突装置(SCI)のサイエンス検討と分離カメラ(DCAM3)の開発を担当



# SCIフライトモデル



Electronic device Safe & arm device
最新の分離性能に基づく衝突シミュレーション(モンテカルロシミュレーション)
→ 半径200m以内に着弾可能







# SCI 仕様

- Total weigh of SCI: < 20kg
  - Size: Φ300mm x h300mm
- Explosive part:
  - Shape: Circular cone (Diameter: 265mm)
  - Explosive: 4.5kg, Liner: 2.5kg
- Deformation of liner:
  - Shape of projectile: Shell type
  - Velocity of projectile: > 2000m/s
  - Weight of formed projectile: > 2kg

# 分離カメラ (DCAM3)

 工学検証用のアナログカメラ(DCAM3-A)と理学 観測用のデジタルカメラ(DCAM3-D)からなる.



15年1月7日水曜日

# 分離カメラ (DCAM3)

21

#### 工学検証用のアナログカメラ(DCAM3-A)と理学 観測用のデジタルカメラ(DCAM3-D)からなる.

HAYABUSA2





**HAYABUSA2** 

#### DCAM3-D Specification Requirements

- detect SCI body before explosion to determine the collision angle.
- determine the ejecta curtain angle within 10% error.
- detect high-speed spall fragments (50 m/s) from a rocky surface.
- have high-speed transmitter for immediate data transmission to the mother ship.

| Specifications          | Requirements                                                   |
|-------------------------|----------------------------------------------------------------|
| Space resolution        | < 1 m/pixel (2000 x 2000 pixels)                               |
| Frame rate              | 1 frame/sec maximum                                            |
| Optics FOV angle        | 74° x 74°                                                      |
| Optics F                | < 1.7                                                          |
| Optics Ensquared Energy | > 65% @2 x 2 pixels                                            |
| ADC digits              | > 8 bit (gray scale)                                           |
| S/N                     | > 5 for far SCI body                                           |
| Operation duration      | 1000 sec for ejecta curtain<br>1-2 hours for low-velocity dust |

# SCI Separation SCI Separation SCI Separation SCI Separation



15年1月7日水曜日

## SCI/DCAM-3の運用



観測終了

## SCI/DCAM-3の運用



# SCI (小型衝突装置)の目的

- SCIによるアクティブ探査: 1999JU3の起源と進化
  - -人工クレーターを形成し、その内部(もしくは周囲)から 地下試料のサンプリングを可能にする。
  - -宇宙風化のない内部を暴露し、リモセンによる宇宙風化の 比較観測を可能にする.
  - -クレーター内部の観測から浅層構造に関する知見を得る.
- 宇宙衝突実験による「衝突の科学」: 1999JU3を利用した物理 素過程の研究
  - -1999JU3上でのクレーター形成過程を明らかにする

クレーター形成過程:微小重力の影響





クレーター形成過程:微小重力の影響



クレーター形成過程:微小重力の影響



クレーター形成過程:微小重力の影響



## DCAM3により撮影される予測画像



optimistic case -> sand surface 100m height ejecta curtain

- FOV 74°x74°
- IFOV 0.646mrad
- 2000x2000pixel
- Resolusion 0.646m/pixel @ 1000m
- 10 successive images every 1 sec for 10sec.
- Asteroid
   900m 1400pixel
   albedo 0.07
- Ejecta albedo max 0.07 is assumed Heigh 100m, Width200m (156x312pixel) after 400 sec
- Asteroid image
- Vesta/Dawn
- (dawn-image-072311-700)

27
イジェクタスケーリング則の検証と改訂



イジェクタスケーリング則の検証と改訂



イジェクタスケーリング則の検証と改訂

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_1.jpeg)

イジェクタカーテン

- イジェクタ速度分布の改訂
  - イジェクタカーテンの拡大速度
    - <u>重力や強度がクレーター形成過程に及ぼす影響</u>
- Zモデルの検証:掘削過程の標準モデル
  - イジェクタカーテンの角度
    - <u>掘削流の深さ、放出物の総量、表層における衝撃</u>
       <u>波の減衰過程</u>

克服すべき問題

- イジェクタカーテンの解析方法が確立していない
  - 放出位置と粒子速度, 放出角度の関係を求めたい
  - 個々の粒子の運動とカーテン形状の関係を知る必要 がある
  - カーテン形状の時間変化から速度分布と放出角度を 求める解析方法を確立する

![](_page_42_Figure_5.jpeg)

地上実験

- 砂やガラスビーズを用いたクレーター形成実験
  - 個々の放出物の速度分布,放出角度,さらにイジェクタカーテン形状に関する系統的な研究を開始
- 今後,速度範囲を広げ,次に標的物質の物性を系統的に変化させていく予定。

# 石英砂ターゲットにおける クレーターエジェクタの速度分布 に関する実験的研究

辻堂さやか<sup>1</sup>, 荒川政彦<sup>1</sup>, 保井みなみ<sup>1</sup>, 鈴木絢子<sup>2</sup>, 松榮真一<sup>1</sup> 1 神戸大学大学院理学研究科, 2 JAXA

### 背景

- ・太陽系の多くの天体表面には衝突クレーターが存在
  - ・ 衝突クレーター形成:太陽系の形成、進化において普遍的な現象

### ・エジェクタ速度分布

- ・天体表層の衝突進化について議論する上で重要
- ・スケール則: クレーターと衝突条件の関係を定量的に理解する鍵
  - クレーター周りのエジェクタ堆積物の分布を定量的に決定 (Housen et al., 1983)
  - 天体から脱出するエジェクタの量を決定
- ・実際の天体への応用
  - エジェクタ質量分布からイトカワのボルダーの個数とサイズを計算 (Michikami et al., 2008)
  - はやぶさ2のSCI実験(1999JU3)へも応用 (今後)

## 先行研究

Housen and Holsapple, 2011
カップリングパラメータ: C = r<sub>p</sub> ρ<sup>v</sup><sub>p</sub> v<sup>\mu</sup><sub>i</sub>
エジェクタ速度のスケール則:  $\frac{v_0}{\sqrt{aR}} = k_2 \left(\frac{x_0}{R}\right)^{-\frac{1}{\mu}}$ 

![](_page_46_Figure_2.jpeg)

弾丸半径:r。

弾丸密度: ρ<sub>p</sub> 弾丸質量: m<sub>。</sub>

初期位置 初速度v。

→ん放出角度

ターゲット密度: ρ.

重力加速度: a

衝突速度: v

# 先行研究

- Maxwell,1977; Zモデル
  - 放出角度θ; tanθ = Z-2
    - ・粒体に対するクレーター形成における地下の流線をモデリング
    - ・粒子速度の動径方向の成分は、爆破中心からの距離の
       -Z乗という形で表すことができるとした
    - ターゲット内部での物質流は非圧縮であると仮定
    - 流線は互いに干渉しないと仮定
  - Housen et al., 1983

・クレーター形成に関するZモデルと  
スケール則
$$\left(\frac{v_0}{\sqrt{gR}} = a \left(\frac{x_0}{R}\right)^{-\frac{1}{\mu}}\right)$$
の関係: Z=1/µ  
⇒  $\mu \ge \theta$ の関係: tan $\theta$ =1/ $\mu$ -2

![](_page_47_Figure_9.jpeg)

![](_page_47_Figure_10.jpeg)

• Croft (1980)

Generalized Z—Model Geometry Fig. A1. Schematic drawing defining symbols used in derivations in Appendix.

- ・爆破中心が浅く埋められていた場合に対してZモデルを拡張
- 爆破中心の深さが大きいほど、破片の放出角度が大きくなる (Croft, 1980)

### 目的

### クレーター形成時のエジェクタのその場観測から 表層の物性についての情報を取得する

*⇒ はやぶさ2のSCI実験; 1999JU3* 

・<u>重力支配域におけるクレーター形成過程の網羅的研究</u>: エジェクタ速度分布のスケール則を再構築

#### ・エジェクタ速度分布の...

**弾丸密度依存性** (1.1~11g/cm<sup>3</sup>)

 <sup>भ</sup>丸: Nylon, Glass, Al<sub>2</sub>O<sub>3</sub>, Ti, ZrO<sub>2</sub>, Fe, Cu, Pb (1.1~11g/cm<sup>3</sup>)

 <sup>\*</sup> 衝突速度:~200m/s (Tsujido et al. in prep.)

 <sup>\*</sup> 弾丸の潜り込み効果

 <sup>\*</sup> 衝突速度を1.5~6.9km/sの間で変化させて衝突クレーター形成実験を行う

 <sup>\*</sup> 過去の~200m/sで行った実験結果(Tsujido et al. in prep.)と比較する

### 実験方法(低速度域)

#### 実験条件

装置: 縦型一段式軽ガス銃(@神戸大学)

- 衝突速度: ~ 200 m/s
- 真空度:~1000 Pa
- 標的: 500µm 石英砂
- **弾丸密度: 1.1 11.3 g/cm<sup>3</sup>** (球形, φ= 3mm)
- 観察
  - NAC高速度ビデオカメラ
  - 撮影速度: 2000 fps

![](_page_49_Picture_10.jpeg)

| 弾丸物質                       | Pb   | Cu  | Fe  | ZrO <sub>2</sub> | Ti  | $Al_2O_3$ | Glass | Nylon |
|----------------------------|------|-----|-----|------------------|-----|-----------|-------|-------|
| 密度<br>(g/cm <sup>3</sup> ) | 11.3 | 8.9 | 7.9 | 5.7              | 4.5 | 3.6       | 2.6   | 1.1   |

実験方法 (高速度域)

### 実験条件 装置: *縦型二段式軽ガス銃 @宇宙研*

- *衝突速度: <u>1.6 ~ 6.9 km/s</u>*
- 真空度: ~7.0 Pa
- 標的: 500 µ m 石英砂
- 弾丸:ポリカーボネイト球 (*ρ*=1.2 g/cm<sup>3</sup>,Φ=4.7mm)
- 観察
  - CASIO 高速度ビデオカメラ
     撮影速度: 600fps(上から)
  - ② NAC 高速度ビデオカメラ
  - 撮影速度: 2000 fps
     HPVX 高速度ビデオカメラ
  - ・ 撮影速度: 20000fps
     ④ HPV1 高速度ビデオカメラ
    - 撮影速度: 125000fps

![](_page_50_Picture_12.jpeg)

![](_page_51_Picture_0.jpeg)

### <u>マイラー膜と風よけ</u>によって 加速ガスがエジェクタカーテンに 与える影響を除いた → 遅い粒子の観察も可能

真空チャンバー内

![](_page_51_Picture_3.jpeg)

![](_page_51_Picture_4.jpeg)

![](_page_52_Picture_0.jpeg)

![](_page_52_Picture_1.jpeg)

- ▶ 弾丸
  - ナイロン (1.1 g/cm<sup>3</sup>)
- ▶ 衝突速度
  - ▶ 208 m/s
- > クレーター形成時間(√R/g)
  - ▶ 0.048 s

- ▶ 弾丸
  - ▶ 鉄 (7.9 g/cm<sup>3</sup>)
- ▶ 衝突速度
  - ▶ 188 m/s
- クレーター形成時間 (√R/g)
   0.060 s

▶ 衝突速度: 6.9 km/s ▶ 弾丸:ポリカーボネイト

![](_page_53_Picture_1.jpeg)

<u>風よけを用いたことで、</u> <u>エジェクタカーテンは加速ガスの影響を受けずに成長</u> → 粒子の計測範囲が広がった

![](_page_54_Picture_0.jpeg)

![](_page_55_Figure_0.jpeg)

![](_page_56_Figure_0.jpeg)

![](_page_57_Figure_0.jpeg)

![](_page_58_Figure_0.jpeg)

![](_page_59_Figure_0.jpeg)

![](_page_60_Figure_0.jpeg)

![](_page_61_Picture_0.jpeg)

![](_page_61_Figure_1.jpeg)

![](_page_62_Figure_0.jpeg)

![](_page_63_Figure_0.jpeg)

![](_page_64_Figure_0.jpeg)

![](_page_65_Figure_0.jpeg)

![](_page_66_Picture_0.jpeg)

弾丸: 3物質 + ポリカ 衝突速度:~200m/s + >1.5km/s

![](_page_66_Figure_2.jpeg)

![](_page_67_Picture_0.jpeg)

衝突速度依存性

![](_page_67_Figure_2.jpeg)

エジェクタカーテン角度  $p_{\nu-p-\overline{N}\overline{K}\overline{K}\overline{R}}$ 

![](_page_68_Figure_1.jpeg)

![](_page_69_Figure_0.jpeg)

![](_page_70_Figure_0.jpeg)

# μと放出角度θの関係

![](_page_71_Figure_1.jpeg)

 $\mu \ \epsilon \theta$ の関係(Zモデルより): tan $\theta = 1/\mu - 2$ 

- 高速度衝突のポリカーボ ネイト弾丸、低速度衝突 のナイロン弾丸の結果: 理論値と合う
  - 高密度弾丸の結果:
     理論値と合わない

Zモデルの点源に 深さを持たせると μとθはどう 変わってくるか
```
速度分布(Zモデル)
     10<sup>1</sup>
                                                                         Z=3.0
                                                                         \alpha = 5.0 \times 10^{-5}
                                                                         点源の深さd:0~6mm
     10<sup>0</sup>
                                                2 < x_0/r_p < 20
                                                   Cfitting
∑
≥ 10<sup>-1</sup>
                 X
                     0
                     1mm
                 10<sup>-2</sup>
                     2mm
                 \diamond
                     3mm
                 Ο
                                                                       流線の中心が深さ:大
                     4mm
                 +
                                                                         →速度分布の傾き:小
                     5mm
                 Δ
                                                                           \rightarrow \mu: \mathbf{T}
                     6mm
                 ▼
   10^{-3}
         10<sup>0</sup>
                                                     10<sup>1</sup>
                                    x_0/r_p
```

```
放出角度 (Zモデル)
```





~まとめ~

- ●エジェクタ速度分布の...
  - ●弾丸密度依存性(1.1~11g/cm<sup>3</sup>)
     御空速度依存性(200m/s~6.9km/s)
  - ●衝突速度依存性(200m/s~6.9km/s)
- ●弾丸密度が大きくなる程、µが大きくなる
- ●衝突速度依存性はみられない
- ●速度分布から求めたµとサイズのスケール則から求めたµはほぼ一致
- ●エジェクタカーテン角度はエジェクタ速度分布と放出角度によって決まる
- 低密度のナイロン弾丸、ポリカ弾丸でのμ、放出角度θはZモデルの理論値と一 致、それ以外の高密度弾丸でのμ、θは理論値とは合わない

スケール則~重力支配域~

- ●Zモデルの点源に深さを持たせた場合...
  - 点源が深くなる程、µが大きくなる傾向
  - 点源が深くなる程、θが大きくなる傾向
- Quarter-space 実験
  - ●潜り込みのある実験では、流線の中心が連続的に変化
    - → 単純にZモデルでは表せない
  - ●Zを弾丸毎に変えると実験結果を説明可能