CPS seminar 3/6/2013

原始惑星系円盤でのマグネシウムケイ酸塩気相成長と蒸発 Vapor growth/evaporation of Mg-silicate under protoplanetary disk conditions: Experimental study

Shogo Tachibana

Dept. of Natural History Sciences, Hokkaido Univ.

Material Circulation in the Galaxy

Blue supergiant "Sher 25"

> Starburst cluster

Proplyds

Giant pillars

Dense

molecular

clouds

Material Circulation in the Galaxy

Stars Stars SNe II SNe Ia AGBs SNe II SNe Ia AGBs Interstellar Medium Molecular Clouds

> Journey of Dust

Gail & Hoppe (2010)

Dust: Key for the Galactic Chemical Evolution

Material Circulation in the Galaxy

Stars SNe II SNe Ia AGBs Interstellar Medium Molecular Clouds

Dust: Building block of planets

How did dust particles form in space?

Grain size, number density, mineral assemblages

How did dust particles form in space?

Grain size, number density, mineral assemblages

Growth kinetics of dust from vapor

$$Fe(g) \rightarrow Fe(s)$$

$$\mathbf{J}_{net} = \mathbf{J}_{in} - \mathbf{J}_{out}$$

$$\mathbf{J_{net}} = \frac{\boldsymbol{\alpha_c} \, p_{Fe} - \boldsymbol{\alpha_e} \, p_{Fe}(eq)}{\sqrt{2\pi \, m_{Fe} kT}}$$

$\boldsymbol{\alpha}_{\boldsymbol{\mathsf{C}}}$: Condensation coefficient

(Sticking probability of impinging atoms/molecules)

α_e : Evaporation coefficient

Laboratory Studies !

Evaporation experiments of minerals

Evaporation experiments at low pressures

- Forsterite (Mg₂SiO₄):

Hashimoto, 1990; Nagahara & Ozawa, 1996; Tsuchiyama+, 1999; Wang+, 1999; Kuroda & Hashimoto, 2002; Yamada+, 2006; Takigawa+, 2009; Ozawa+, 2012

- Olivine ((Mg_{0.9} Fe_{0.1})₂SiO₄): Ozawa & Nagahara, 2000
- Enstatite (MgSiO₃): Tachibana+, 2002
- Silica (SiO₂): Young+, 2002
- Silicate melts: e.g., Hashimoto, 1983; Nagahara & Ozawa, 1996; Wang+, 2001; Yu+, 2003; Richter+, 2002, 2007

Evaporation experiments at low pressures

- Forsterite (Mg₂SiO₄):

Hashimoto, 1990; Nagahara & Ozawa, 1996; Tsuchiyama+, 1999; Wang+, 1999; Kuroda & Hashimoto, 2002; Yamada+, 2006; Takigawa+, 2009; Ozawa+, 2012

- Metallic iron : Tsuchiyama & Fujimoto, 1995; Tachibana+, 2011
- Troilite (FeS): Tachibana & Tsuchiyama, 1998
- Corundum (Al₂O₃): Takigawa, 2012, Ph.D. thesis

Evaporation experiments at low pressures

Weight loss of sample due to isothermal heating in vacuum or at low hydrogen pressures

 \rightarrow Evaporation rate

Evaporation of Fe metal in vacuum

Evaporation of forsterite at low hydrogen pressures

circle: along the a-axis square: along the b-axis triangle: along the c-axis

Evaporation coefficients

mineral	αe	references
corundum	0.1-0.01	Takigawa (2012, PhD thesis)
forsterite	0.1–0.01	e.g., Tsuchiyama+ (1998); Yamada+ (2006); Takigawa+ (2009)
enstatite	0.1 (as Fo)	Tachibana+ (2002)
Metallic Fe	1–0.6	Tsuchiyama & Fujimoto (1995) Tachibana+ (2011)
troilite	0.1–10 ⁻³	Tachibana & Tsuchiyama (1998)

Condensation experiments of minerals

Growth at low pressures

- good for understanding kinetics if experimental conditions are controlled

Condensation of metallic iron in vacuum (Tachibana+, 2011)

Growth of metallic iron at controlled T and PFe

Condensates

Tachibana+ (2011)

Photo:

Growth steps on Fe metal condensed from vapor at 1235 K for 48 hr

Condensates

Tachibana+ (2011)

Photo:

Growth steps on Fe metal condensed from vapor at 1235 K for 48 hr

1 micron

Evaporation & Condensation coefficients

mineral	αe	αc
corundum	0.1-0.01	~0.05 (Takigawa, 2012)
forsterite	0.1–0.01	
enstatite	0.1 (as Fo)	
Metallic Fe	1–0.6	~1 (Tachibana+, 2011)
troilite	0.1–10 ⁻³	~0.02

Evaporation of forsterite

 $Mg_2SiO_4(s) = 2Mg(g) + SiO(g) + 3O(g)$

 Free evaporation regime
 (FED)

 Hashimoto (1990); Wang+ (1999); Yamada+ (2006);
 Takigawa+(1999); Ozawa+ (2012)

 $Mg_2SiO_4(s) + 3H_2(g) = 2Mg(g) + SiO(g) + 3H_2O(g)$

Hydrogen-reaction dominated regime (HRD)

– J_{evap} proportional to $pH_2^{1/2}$

Nagahara & Ozawa (1996); Tsuchiyama+ (1998); Kuroda & Hashimoto (2002); Takigawa+ (2009)

 pH_2O/pH_2 -buffer dominated regime (**HBD**) - J_{evap} proportional to pH_2O/pH_2 Evaporation of forsterite

Tsuchiyama, Tachibana, Takahashi (1999)

Infrared vacuum furnace

Evaporation of forsterite

 $Mg_2SiO_4(s) = 2Mg(g) + SiO(g) + 3O(g)$

 Free evaporation regime
 (FED)

 Hashimoto (1990); Wang+ (1999); Yamada+ (2006);
 Takigawa+(1999); Ozawa+ (2012)

 $Mg_2SiO_4(s) + 3H_2(g) = 2Mg(g) + SiO(g) + 3H_2O(g)$

Hydrogen-reaction dominated regime (HRD)

– J_{evap} proportional to $pH_2^{1/2}$

Nagahara & Ozawa (1996); Tsuchiyama+ (1998); Kuroda & Hashimoto (2002); Takigawa+ (2009)

pH₂O/pH₂-buffer dominated regime (**HBD**) - J_{evap} proportional to pH₂O/pH₂ confirmed for the first time

Evaporation & Condensation coefficients

mineral	0.e	αc
corundum	0.1-0.01	~0.05 (Takigawa, 2012)
spinel		~0.02
forsterite	0.1–0.01	~0.1?
enstatite	0.1 (as Fo)	
Metallic Fe	1–0.6	~1 (Tachibana+, 2011)
troilite	0.1–10 ⁻³	Growth (and evaporation) of forsterite dust occurs less
		efficiently than remerci

Application to cosmochemistry

AOA Formation

Grain size, number density, mineral assemblages

Summary & Conclusions

Understanding of **dust formation kinetics** is a key to understand dust forming environments

experiments at controlled low-pressure "realistic"
 conditions combined with observation and modeling

Evaporation of forsterite controlled by pH₂O/pH₂ is confirmed; Kinetics is likely to be the same

Growth experiments of forsterite under controlled protosolar disk-like conditions are now being made; The growth efficiency is not as good as metallic iron