Rings, Moons and Water-Worlds

Cassini investigates Saturn's spectacular moon Enceladus

Frank Postberg _{1,2}, Hsiang-Wen Hsu ₃ & the CDA Science Team

Pictures: NASA / JPL

Inst. of Geosciences, University of Heidelberg 2) Inst. of Space Systems, University of Stuttgart
 3) LASP, University of Colorado, Boulder

Our Analytical Lab at Saturn: Cassini-Huygens

• 3 – axis stabilized

Our Analytical Lab at Saturn: Cassini-Huygens

Saturn's Satellites and Ring Structure

Enceladus

YEAR: 2006 MISSION: CASSINI TARGET: SATURN

Icy Jets of Enceladus

the state of the state of the

100

Resolution 6m/pixel

Cassini Flyby 14 Juli 2005 closest approach: 270 km

Plume properties

gas emission 150 - 250 kg/s

gas speed

- ratio: gas/icy dust $\sim 2 5$
- dust particel size $0.001 10 \,\mu m$
- dust particle speed 10 300 m/s

escape speed $\approx 230 \text{ m/s}$

- \rightarrow gas- and dust flux are decoupled
- → 0.5% 5% escapes and forms Saturn's E-ring (~1 kg/s)
- relatively steady emission over years
- matter emitted by Enceladus dominates
 Saturn's environment even beyond Titan!

Composition

• Gas phase:

- H_2O > 92 %
- CO_2 ~ 0.5 5%
- volatile organics $\sim 1 3 \%$
- $NH_3 \sim 1\%$
- CO $< 3^{0}/_{0}$
- N_2 < 0.5 %
- Na < 0.0001 %

• surface (from IR-spektroscopy):

- almost the entiry surface is pure water ice
- exception: CO₂ inclusions and traces of organic material at the Tiger Stripes

Since when is Enceladus active?

- Estimate:
- from E ring profile
- \rightarrow active since > 1000 Jahren
- from "depth of snow"

(b) Ice Deposition

Since when is Enceladus active ?

- snow layer > 100 m more than 100 km away from sources
- \rightarrow requires activity of
 - > 10.000.000 years

Liquid Water?

"boiling" water

- -> fracture exposes liquid suddenly to vacuum
- -> explosive boiling produces H₂O gas, liquid, and particles

clathrate decomposition

- -> volatile gases are suddenly "set free" and drag along ice particles
- -> H₂O fomrs from sublimation of entrained ice particles

sublimation of warm ice

- -> H₂O gas
- -> icy particles from through recondensation from vapour

water reservoir(s)

- -> slow evaporation
- -> ice particles from frozen spray (aerosols)
- -> ... and vapor condensation

Chemical and Dynamic Characterisation of Saturn's Dust Environment: Cosmic Dust Analyser (CDA)

CDA measurements of E-Ring populations

Postberg et al. (2008, 2009)

- $\sim 90\%$ of E ring spectra show almost pure water ice
- $(H_2O)_nH^+$ cluster from defining pattern \rightarrow pattern strongly varies with impact velocity

CDA measurements of E-Ring populations

Postberg et al. (2008, 2009)

$\sim 6\%$ of all E ring Spectra

- $(NaOH)_nNa^+$ cluster indicate strongly enhanced Na abundance $(Na/H_2O > 10^{-3})$
- $(NaCl)_nNa^+$ and $Na(Na_2CO_3)Na^+$ cluster:
 - \Rightarrow NaCl + NaHCO₃ / Na₂CO₃ are the Na bearing compounds
- K-salts at much lower concentration

Reproduction of CDA spectra in the laborartory simulation of impact-ionisation: \rightarrow IR-Laser on μ m water droplets → High-res TOF mass spectra \rightarrow Test with different salty solutions Best Fit: 0.1 - 0.2 M/L NaCl: NaHCO₃: 0.05 - 0.1 M/LpH : ~ 8.5

Na/K: ~ 100

amplitude

salt-rich water ice

Postberg et al. (2008, 2009)

⇒ 98% ice, 1 - 2% salts

hinspace NaCl , NaHCO3 / Na2CO3, KCl

- \rightarrow saltwater with alkaline pH (8 9)
- ⇒ Exactly these components were predicted for an Enceladus Ocean! (Zolotov, GRL 2007)

Na⁺ Cl⁻ $HCO_3^ CO_3^{2-}$ K⁺

NASA / JPL

Rock

CDA measurements at close encounters

CDA measurements at close encounters

Postberg et al. (2011) before closets approach: increase of 200 percentage of salt rich particles. 0 ane [km] Maximum ~ 5 s after closest approach rial p -200 salt rich fraction goes down again equate -400 Ince from orbit 80 (E4): aug 11, 2008 fraction of salt-rich [%] -600 40 orbit 88 (E5): oct 09, 2008 dist orbit 120 (E7): nov 02, 2009 -800 30 tick intervals: 10 seconds -1000 20 0 400600 800 E 200 distance from pole axis [km] 10 -60 60 -40 -20 20 40 seconds from closest approach

CDA measurements at close encounters

Postberg et al. (2011) \rightarrow salt-rich particles are larger and heavier 200 than salt-poor particles \rightarrow heavy particles \rightarrow lower ejection speed \rightarrow rial plane [km] populate plumes preferably closer to the -200 surface fraction of salt-rich [%] 0 0 0 00 05 05 15 salt-rich salt-poor 10 5 10 100 1000 ion yield (fC) -60 -20 60 -40 20 40 seconds from closest approach

A compositionally stratified plume

→Enceladus preferably produce salt-rich grains
→liquid water (not ice) must be the main source

How salt-rich particles form ?

How salt-rich particles form ?

Schematic diagram, not to scale.

Matson et al. 2012

Ocean

