かぐや測地データより示唆された 月の長期変形と熱進化

The long-term deformation of the Moon inferred from Kaguya geodetic data and implications for its thermal evolution

東大・理・地惑

- Ch. 1 研究背景
- Ch. 2 長期粘弾性変形計算手法
 計算手法の比較
- Ch. 3 月地殻構造解析 I: 新鮮な衝突盆地
 かぐやデータ解析 + 粘弾性変形計算
- Ch. 4 月地殻構造解析 II: 崩れた衝突盆地
 かぐやデータ解析 + 粘弾性変形計算
- Ch. 5 月の「海」の地形から探る大規模変形
 かぐやデータ解析 + 粘弾性変形計算

月の熱史研究

- •主要なプロセスを支配(対流、分化、...)
- 月はほぼ岩石だけで出来ている
 風化・浸食がなく太古の地質記録を保持
 より複雑な固体惑星の初期進化理解の鍵
 - 特にプレートテクトニクスのない固体惑星

月に関しては比較的豊富な観測データ

 う 詳細な実証的研究

月熱史の概略

- ・斜長岩地殻の形成 (~4.5 Gyr ago)
 マグマオーシャンの固化
 - 直後にマントルオーバーターン?
- (= 直径 >300 km の巨大クレーター)
 - 全球に分布 (崩れた盆地、新鮮な盆地)
 - 後期重爆撃期に集中的に形成?
- 海の形成 (~4-1 Gyr ago) 低粘性玄武岩質マグマが噴出 表側に極端に集中

熱構造を反映する観測

- 地温勾配計測
 - 表側中緯度2地点のみ
- ガンマ線計測(放射性元素濃度)
 - 表層 <1 m のみ [e.g., Prettyman+, 2006]
- ・測地観測(地形・重力場)
 ・ 全球での観測
 ・「かぐや」の成果
 ・ 地殻〜上部マントルまでの

内部の密度構造を反映

アポロ15号での地温勾配計測

大規模地形の長期粘弾性変形

10²⁹

10²⁸

10²⁶

10²⁵

10²⁴

Dislocation creep

Pyroxene

Olivine

1400

地殻下部の水平流動

1600

σ = 20 MPa

- 変形度合いは地殻・マントル の粘性に依存
- 粘性ηは温度Tに強く依存

 $\eta \propto \exp(1/T)$

Crust

Mantle

隕石衝突による盆地形成

アイソスタシーの回復

先行研究とその課題

• 得られた結果 [e.g., Solomon+, 1982]

- 崩れた衝突盆地構造は地殻下部での激しい粘性水平流動
 - 形成期のモホ面温度 > 1300 K [Mohit & Phillips, 2006]
- •表側の新鮮な衝突盆地(マスコン)の構造
 - 形成時のマントルの粘性 > 6 x 10²⁶ Pa s [Arkani-Hamed, 1998]

課題

- 重力場データの空間解像度が低い
 - 裏側での重力場観測がなされていないため
 - 表側の大きな衝突盆地のみ解析されてきた
- 非常にシンプルなモデル計算のみ
 - 熱進化を組み込んだ億年スケールの粘弾性計算例なし

先行研究とその課題

・ 里刀場ティーがくや別地テーダ

 ・ 裏側でく
 「e.g., Namiki+, 2009]
 ・ 表側の2
 ^{衛星運用・データ1次解析}
 ・ 大きた

 ・ 非常にシンプル7
 ・ 熱進化を組みジ
 ・ 新進化を組みジ

初期地殻構造の不定性

- 異なる初期地殻構造→異なる熱構造
- •初期地殻構造を仮定しない
 - 得られる情報は限られる
- •初期地殻構造を仮定する
 - モデル依存性が大きい

• Ch. 1 研究背景

• Ch. 4

Ch. 2 長期粘弾性変形計算手法
計算手法の比較

• Ch. 3 月地殻構造解析 I: 新鮮な衝突盆地

• かぐやデータ解析 + 粘弾性変形計算(初期構造仮定なし)

Submitted to JGR Planets

(with S. Sugita, Y. Abe, Y. Ishihara, Y. Harada, T. Morota, N. Namiki, T. Iwata, H. Hanada, H. Araki, K. Matsumoto, and E. Tajika)

• かぐやデータ解析 + 粘弾性変形計算

かぐや測地データによる地殻構造推定

熱進化モデル

球面調和展開による粘弾性変形計算

球面調和展開による粘弾性変形計算

- 熱進化 *t* = 400 Myr (盆地形成期)
 - モホ面の温度…地殻中の 熱源元素量に強く依存
- 粘弾性変形
 マントルアップリフトの高さ
 が減少する様子
 - 温度構造に強く依存

地殻厚: 50 km	
地設熱伝導率:	1.5 W/m/K

初期地形の復元 (Hertzsprung)

地殻厚の誤差に由来

Init. surface temp. gradient, (dT/dr)_S (K/km)

温度勾配上限に明確な地域差

PKT (表側中緯度): <~40 K/km
FHT-An (裏側北部): <~20 K/km
地殻下部での熱源元素量に制約

PKT: Procerallum KREEP Terrane
SPAT: South Pole-Aitken Terrane
FHT: Feldspathic Highlands Terrane
-An: Central anorthositic region
-O: Outer region

議論:熱源元素の地下分布

- ガンマ線分光では計測不可
- 裏側高地
 - 条件1: 典型的な地殻厚 80 km [e.g., Ishihara+ 2009]
 - 条件2: 衝突盆地形成は 3.7 Ga よりも前 [e.g., Stöffler+2006]
 - 条件3: 衝突盆地形成期に <24 K/km
- → 地殻での平均Th濃度
 <~0.5 ppm
 - 裏側高地は地殻深部
 まで Th に枯渇
 - ・マグマオーシャンの 固化の水平不均質

議論:熱源元素の地下分布

- Ch. 1 研究背景
- Ch. 2 長期粘弾性変形計算手法
 計算手法の比較
- Ch. 3 月地殻構造解析 I: 新鮮な衝突盆地
 かぐやデータ解析 + 粘弾性変形計算
- Ch. 4 月地殻構造解析 II: 崩れた衝突盆地 • かぐやデータ解析 + 粘弾性変形計算(初期構造仮定あり)
- Ch. 5 月の「海」の地形から探る大規模変形
 かぐやデータ解析 + 粘弾性変形計算

かぐや測地データによる地殻構造推定

かぐや測地データによる地殻構造推定

研究目的・手順

- 熱進化 *t* = 400 Myr (盆地形成期)
 - モホ面の温度…地殻中の 熱源元素量に強く依存
- 粘弾性変形
 マントルアップリフトの高さ
 が減少する様子
 - 温度構造に強く依存

地殻厚: 50 km	
地設熱伝導率:	1.5 W/m/K

粘性緩和後の地形

粘性緩和後の地形

月地殻の大部分は厚さ < 60 km

- 先行研究の主張:固体で十分に緩和 ^{[e.g., Solomon+, 1982;} Mohit & Phillips, 2006]
 - •計算モデルの簡略化 + 大きな計算誤差 (Ch. 2)
- 平らな地殻構造を作る要因

 - Pyroxene-rich な下部地殻、潮汐加熱、… → 棄却
 - ・モホ面温度 > ソリダス
 - 莫大な放射壊変熱 → PKT (表側低~中緯度) のみ (Ch. 3)

[e.g., Wieczorek & Phillips, 2000]

PN4以前の衝突盆地

全球に分布、平坦

PN5 以降の衝突盆地

- 崩れた盆地はマグマオーシャン固化前に形成
- PN4/PN5境界はマグマオーシャン固化のタイミング

- Ch.2:長い時間スケール(>10⁸ yr)の変形を考えるときには、モード分解法は使えない場合あり
- **Ch.5**:海の地形はセレノイドに対して~0.1[°]傾斜、低次の内部荷重(Ilmenite-rich layer?)による変形の可能性

• マントルオーバーターンしきっていない?