

Thermal Infrared Observations of Minor Bodies in the Outer Solar System.

関口 朋彦(北海道教育大学·旭川校)

ALMA (Atacama Large Millimeter & submillimeter Array)

300 mm

ACA 12mアンテナ性能評価試験 2: 絶対指向精度性能

位置測定用光学望遠鏡の窓穴

→ 4月から 北海道教育大旭川校

1) 光学望遠鏡による指向精度測定の流れ
 2) Tpointによる解析
 3) 指向精度性能の長期間安定性

Thermal Infrared Observations of Minor Bodies in the Outer Solar System.

関口 朋彦(北海道教育大学·旭川校)

北海道教育大学 担当科目

前期担当科目

- 1) 地学概論 I : 基礎天文学/1年生
- 2) 基礎地学実験 :実験(ケプラー、分光、HR図、星座早見盤)/2年生
- 3) 中学校理科実験 I: 中学校で行う実験(オムニバス)/3年生
- 4) 理科教材開発実習:教材開発(オムニバス)/4年生
- 5) 現代と科学:教養科目(オムニバス)/2年生
- 6) 地学演習:4年生卒論セミナー/4年生
- 7) 地学実験 I:研究室セミナー/1年生~4年生
- 8) 天体物理学特論 I:大学院科目/修士

後期担当科目

- 1) 天体物理学 : 天文学/3年生
- 2) 基礎地学実験 :実験(ケプラー、分光、HR図、星座早見盤)/2年生
- 3) 初等理科:小学校理科(オムニバス)/2年生
- 4) 理科教材開発研究(オムニバス)/3年生
- 5) 中学校理科実験 II : 理科教育実験/3年生
- 6) 地学実験 II:4年生卒論セミナー/4年生
- 7) 天体物理学特論 II: 大学院科目/修士

集中講義 地学野外実習 : 流星観測(宿泊集中講義)/2年生 通年 教育フィールド研究:地域密着科目 隔年 倫理人権:教員養成大学の学生としての道徳

北海道教育大学 業務(!?)

地方小規模大学ならどこでも同じかもしれないが、それにしても教員 養成大学特有の業務が多い

- 教員免許更新講習:現役教員に対する講義(夏休みがなくなる)
 教科書執筆:理科基礎実験書、「新しい北海道の理科」
- 教育実習の授業見学(夏休み期間に5人分)、中学校挨拶廻り
- ◆ へき地校実習への引率
- 各実習のめあて、各実習の報告書の添削・採点
- 入試:問題作成、小論文採点、推薦(25名)面接
 委員:理科教育専修代表(専修長)、入試委員、学生委員
 研究室配属は1年生入学時点から!

Thermal Infrared Observations of Minor Bodies in the Outer Solar System.

関口 朋彦(北海道教育大学·旭川校)

Nature 2005年11月

NEWS

nature

Astronomers reject the term 'planet'

An expert panel charged with ending the debate over what is and isn't a planet has come up with a radical solution: end use of the term altogether, unless it is accompanied by a qualifier.

Debates on nomenclature are common in science, but the planet question is one of the few to have spilled into the public arena. Researchers have argued over the status of Pluto for decades, for example, with some claiming that it is not a fully fledged planet. Similar rows have raged in recent years over how to describe

太陽系小天体の熱放射観測: <u>Erisのサイズ測定を例に</u>

System to free-roaming objects in deep space, is too diverse to justify a single moniker. Instead, the researchers want to define different types of 'planetary object', such as terrestrial planets, including Earth, and extrasolar planets, which orbit stars other than the Sun.

Be Galifornia In the of Technology in Pasadena, who has recently been courting on 12 September, would end such arguments. UB313 and Pluto would be known as Trans-

Eris のミリ波連続波観測

F. Bertoldi, W. Altenhoff, A. Weiss, K. Menten, C. Thum "The trans-neptunian object UB313 is larger than Pluto" Nature, 2005

IRAM 30m, Pico Veleta, Spain Institut de Radio Astronomie Millimétrique

111 **.** 11

LHIH

Brown et al. 2005 ApJ

Samuel Oschin 1.22m シュミット望遠鏡 1949年製

10平方度を一度に撮像

可視撮像観測

Brown et al. 2005 ApJ

Erisは他のTNOsよりちょっと遠い

Pluto

2003 UB313

軌道長半径 (a) 68.048 AU 近日点距離 (q) 38.540 AU 遠日点距離 (Q) 97.557 AU 離心率 (e) 0.434 公転周期 (P) 561.35 年 軌道傾斜角 (i) 43.87 度

散乱TNO: Scattered Disk 天体

可視撮像観測

Brown et al. 2005 ApJ

可視撮像観測

空間分解能~シーイングサイズor 装置依存

例えばマウナケア(ハワイ)やアタカマ(チリ)でベスト 0.5" 各地のシーイング ハワイ, チリ 0.5-1.5秒角 岡山(瀬戸内) 1秒角 程度 木曽観測所 3秒角 程度

1秒角の空間分解能は50AU の距離では 3.6×10⁴km 点光源は天王星海王星半径 (2.5×10⁴km)より大きい。 土星サイズ(r=6×10⁴km)でやっと3 -4分割できる程度

可視撮像観測 (可視測光観測)

大きさ・組成はわかりません 〇 〇 〇 〇

太陽系天体: 可視一近赤外線 → 太陽光反射 反射光のフラックス → 天体の大きさ×アルベド

Keck 10m (近赤外分光) ⇒ 物質科学(組成) IRAM 30m (ミリ波熱放射) ⇒ サイズ測定

小惑星のマッピング:Vestaの例 近くて大きな小惑星なら空間分解可能

(ほんとはサブミリ、遠赤外の方がいいけど)

Surface Temperature of minor bodies

小天体の熱放射と装置感度

Flux Density (mJy)

IRAM 30mによるErisの熱放射の観測

1.27±0.26 mJy @ 250 GHz

2005年8月 19.8, 23.8, 24.8, 27.8日

周波数:250GHz(帯域210-290GHz) 積分時間:5.64時間(on-off 観測 on-source)

Bertoldi et al. 2005, Nature

Table 2 Properties of 2003 UB ₃₁₃ , Pluto, Charon and Ceres				
Case	q = A/p	d (km)	p	Т _ь (К)
2003 UB ₃₁₃ , fast rotation	1	3,136 ⁺²⁶³	$0.54^{+0.11}_{-0.08}$	23.2
2003 UB ₃₁₃ , fast rotation	0.9	$3,094^{+268}_{-286}$	0.55+0.11	23.7
2003 UB ₃₁₃ , slow rotation	0.9	$2,859^{+231}_{-241}$	$0.65_{-0.08}^{+0.11}$	26.9
Pluto Charon Ceres	0.9 0.9 0.4	2,328 ± 48 1,242 ± 42 913 ± 43	0.62 ± 0.02 0.37 ± 0.01 0.10 ± 0.01	~36 40 164

Derived diameter, *d*, red geometric albedo, *p*, and brightness temperature, T_b , for different assumptions on rotation and phase integral, *q*. At mm wavelengths, fast rotation applies for objects seen equator-on and rotating with a period smaller than 40 h, whereas slow rotation applies for those seen pole-on, independent of the rotation period. Data for Pluto^{3,7,12}, Charon^{3,7,12} and Ceres¹³ are shown for comparison. Note that for Pluto the red albedo varies between ~0.49 and ~0.75 within each rotation period; for *p* and T_b we quote mean values.

結果:2003 UB313は冥王星より大きい!?

UB 313 3000 km

Pluto/Charon 2300/1200 km

Moon 3500 km Earth 12800 km

冥王星の表面組成:近赤外線分光

Triton (D~2700km): the biggest TNO?

plume activity

M. Burgdorf (Liverpool JMU), D. Cruikshank (NASA Ames), R. Nakamura (AIST) , T. Sekiguchi, G. Orton (JPL)

retrograde orbit: captured satellite originally from Kuiper Belt Surface: covered with Interior material

Triton (Neptune's moon) Activities

Eruption of N2 gas

Triton's Plume (Voyager II, NASA)

NASA, ESA, and M. Brown (Caltech)

STScI-PRC06-16b
太陽系天体のアルベド

表面物質のアルベド

-	Sentech				Fre	sh Snov ck Clou	w & Ice			
Th	O ain Clou Sand Du oncrete	Id Snow ds une Tur De Soil	v & Ice G Forest ndra ep Wate	rass or 0] Crop					
1.2	and the second	Aspha	lt	175	1					-
C	0.1	0.2	0.3	0.4 /	0.5 Albedo	0.6	0.7	0.8	0.9	1.0

NASA, ESA, and M. Brown (Caltech)

STScI-PRC06-16b

地質活動(ガス噴出)する衛星 エンケラドス

熱放射の観測から大きさを求める方法の検証

太陽光反射(可視光)の明るさと熱放射のフラックスと から大きさとアルベドを決定する

探査機でこれまで直接大きさの測られた小惑星で検 証してみよう

Thermal Infrared Observations of Minor Bodies in the Outer Solar System.

関口 朋彦(北海道教育大学·旭川校)

近い(200-300к)は中間赤外

遠い(数10K)は遠赤・電波

Itokawa の N-バンドフラックスの経年変化

Astronomy Astrophysics

Sekiguchi et al. Astronomy & Astrophysics, (2003)

Thermal observations of MUSES-C mission target (25143) 1998 SF₃₆*

T. Sekiguchi^{1,2}, M. Abe³, H. Boehnhardt², B. Dermawan⁴, O. R. Hainaut², and S. Hasegawa³

¹ National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Japan e-mail: t.sekiguchi@nao.ac.jp

A&A 443, 347–355 (2005) DOI: 10.1051/0004-6361:20053862 © ESO 2005 Astronomy Astrophysics

Mueller, Sekiguchi et al. Astronomy & Astrophysics, (2005)

Thermal infrared observations of the Hayabusa spacecraft target asteroid 25143 Itokawa*

T. G. Müller¹, T. Sekiguchi², M. Kaasalainen³, M. Abe⁴, and S. Hasegawa⁴

- ¹ Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85748 Garching, Germany e-mail: tmueller@mpe.mpg.de
- ² National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan e-mail: t.sekiguchi@nao.ac.jp

地球に最接近時に観測

金星

dkawa

2001年3月14日 日心距離、地心距離、位相角 1.059AU, 0.0739AU, 27.53°

a = 1.323 (AU) e = 0.280 i = 1.728 (度) Apollo-type

水星

地球に最接近時に観測

2004年7月1日 日心距離、地心距離、位相角 1.029AU, 0.0204AU, 54.12°

火星

水星

金星

地球awa

a = 1.323 (AU) e = 0.280 i = 1.728 (度) Apollo-type

チリ ESO La Silla 観測所

ESO 3.6m望遠鏡

Itokawaのサイズとアルベドの導出

Hayabusa 探査機ターゲット Itokawa の熱放射測光

中間赤外観測装置 TIMMI2 Nバンド測光観測 Sekiguchi et al.2003 N・Qバンド測光観測 Mueller, Sekiguchi et al.2005

同じ望遠鏡・装置による多波長、多位相角、多数回の中間赤外観測

	Mid-Time		Filter	r Δ				
No	(Day UT)波	Band	[AU]	[AU]	大陽	位相為ks	
 01	2001/Mar/14	05:50	N11.9	1.059232	0.073897	+27.54	Sekiguchi et al. (2003)	
02	$2001/\mathrm{Apr}/\mathrm{08}$	09:27	N11.9	0.983221	0.053606	108.33	Delbo (2004)	
03	$2001/{\rm Apr}/08$	09:42	N10.4	0.983198	0.053633	108.35	and priv. comm.	
04	$2001/{\rm Apr}/08$	10:01	N12.9	0.983169	0.053667	108.37	"	
05	$2001/{\rm Apr}/08$	10:18	N8.9	0.983142	0.053698	108.38	a7	
06	$2001/{\rm Apr}/08$	10:34	N11.9	0.983117	0.053728	108.40	.32	
07	$2001/{\rm Apr}/09$	09:28	N12.9	0.981024	0.056409	109.93	32 ();	
08	$2001/{\rm Apr}/09$	09:45	N9.8	0.980999	0.056441	109.95	.32 (c)	
09	$2001/{\rm Apr}/09$	10:03	N10.4	0.980972	0.056475	109.96		
10	$2001/{\rm Apr}/09$	10:18	N11.9	0.980949	0.056504	109.98	n)	
11	$2001/{\rm Apr}/09$	10:32	N11.9	0.980928	0.056530	109.99	"	
12	2004/Jul/01	06:03	N1	1.028243	0.020164	-54.63	this work	
13	2004/Jul/01	06:19	N1	1.028279	0.020193	-54.56	3 7	
14	$2004/\mathrm{Jul}/01$	06:36	N1	1.028318	0.020224	-54.49	"	
15	2004/Jul/01	06:54	N1	1.028359	0.020257	-54.41	"	
16	$2004/\mathrm{Jul}/01$	07:16	N2	1.028409	0.020298	-54.31		
17	$2004/\mathrm{Jul}/01$	07:36	N2	1.028454	0.020335	-54.22		
18	2004/Jul/01	07:53	N12.9	1.028492	0.020367	-54.15	22 (5)	
19	2004/Jul/01	08:09	N12.9	1.028529	0.020397	-54.08	.33 M	
20	$2004/\mathrm{Jul}/01$	08:37	Q1	1.028592	0.020450	-53.95	33 V/	
							5%	

Kaasaleinen et al. 2003, Kaasaleinen et al. 2005

黄道面に対して

横から見た形状	上から見た形状	横から90°回転

Kaasalainen et al. 2003, Shape model through lightcurve inversion technique

可視のライトカーブ(連続測光)観測から形状を求める

Kaasaleinen et al. 2003, Kaasaleinen 2005

Hayabusa探査機による直接探査撮像

Release 051101-1 ISAS/JAXA

宇宙航空研究開発機構 JAXA / ISAS

Kaasaleinen et al. 2003, Kaasaleinen et al. 2005

黄道面に対して

横から見た形状	上から見た形状	横から90°回転

Kaasalainen et al. 2003, Shape model through lightcurve inversion technique

熱物理モデル (ThermoPhysical Model)

Imaging by Hayabusa Spacedraft

http://www.jaxa.jp/press/2005/09/20050914_hayabusa_j.html

Hayabusa: 540x270x210m

our study :520x270x230m (+/-50) (+/-30) (+/-20)

JAXA / ISAS

Mueller and Sekiguchi et al. (2005, A&A)

Thermal observations allow us to determine the size for unresoleved small objects (for km-size!)

Hayabusa 探査機による直接測定

Lunar & Planetary Science Conference

2006年3月13-17日、ヒューストン

1. Itokawaの体積 V=1.74 x 10⁷ m³ (撮像結果)

→ 有効直径 D= 322 m

(Maruya et al., Gaskell et al., Demura et al.)

本研究:有効直径=0.32±0.03 km (- 0.6%)

2. Itokawa の表層熱特性(X線装置のラジェーターの測定)

→ 熱慣性の大きな角礫岩的な熱特性 (Okada et al.) 本研究:小惑星レゴリスと金属質の中間の比較的岩石質の多い表面

<u>
森養機測定は本研究結果と一致することが確かめられた</u>

Thermal Infrared Observations of Minor Bodies in the Outer Solar System.

関口 朋彦(北海道教育大学·旭川校)

AKARI ALMA

あかりによる微惑星候補天体観測

関口 朋彦 (北海道教育大 旭川校)

AKARI | ASTRO-F

- 遠赤外線測光観測 (90um帯)
 2006年末一2007年: FIS(遠赤外線サーベイ観測装置) <u>16天体 (Eris含む)</u>
 > ケンタウルス天体 (4天体),遠方準惑星 (3天体),散乱TNOs (2天体),他のTNOs (7天体)
- <u>〇 中間赤外線測光観測 (9um, 18um)</u>
- 2007年:IRC(近・中間赤外線カメラ 観測装置)
- ケンタウルス天体 (5天体) Chiron, Asbolus, Thereus, Amycus, 2003 CO1 5天体
- <u>〇 近赤外線分光観測(2.5—5um)</u>
- 2007年1月15日:IRC(近・中間赤外線カメラ 観測装置)
- ▶ 特異小惑星(不活動彗星核) (1天体) P/2006 HR30 1天体

赤外線衛星: あかり (ASTRO-F) と スピッツァー (SST) IRAS(Infrared Astronomy Satellite)衛星 1983年にアメリカ、イギリス、オランダによって打ち 上げ。世界初の赤外線天文衛星。 赤外線全天マップ・彗星の発見・小惑星のサイズア ルベドカタログを作成 **掃天(サーベイ)型 (→現代版IRAS衛星)** 天文台型(ポインティング) あかり (ISAS/JAXA) **Spitzer S. Tel.** (NASA) 打ち上げ:2003年8月25日 打ち上げ:2006年2月22日 MV-8 口径70cm 口径85cm 近一中間赤外:1.8~26um 近一中間赤外: 3.8~24um 遠赤外:63um, 80um, 149um, 161um 遠赤外:70um, 160um 時期的にも感度的 にもちょっと不利 最近はWISE 衛星

地上からは大気の窓でしか観測できない

ハワイ・マウナケア山頂の大気透過率

地球の大気吸収と天文観測衛星

あかりによる微惑星候補天体観測

関口 朋彦 (北海道教育大 旭川校)

AKARI | ASTRO-F

- 遠赤外線測光観測 (90um帯)
 2006年末一2007年: FIS(遠赤外線サーベイ観測装置) <u>16天体 (Eris含む)</u>
 > ケンタウルス天体 (4天体),遠方準惑星 (3天体),散乱TNOs (2天体),他のTNOs (7天体)
- <u>〇 中間赤外線測光観測 (9um, 18um)</u>
- 2007年:IRC(近・中間赤外線カメラ 観測装置)
- ケンタウルス天体 (5天体) Chiron, Asbolus, Thereus, Amycus, 2003 CO1 5天体
- <u>〇 近赤外線分光観測(2.5—5um)</u>
- 2007年1月15日:IRC(近・中間赤外線カメラ 観測装置)
- ▶ 特異小惑星(不活動彗星核) (1天体) P/2006 HR30 1天体

カイパーベルト天体のサイズとアルベド

Why AKARI-FIS?....TNO low temperature

Spitzer Space Telescope (Stansberry et al. 2008)

47個のケンタウルス・カイパーベルト天体を観測 39個をS/N~5以上で検出し、サイズとアルベドを導出

Number*	Name (Designation)*	AORKE	$Y^{L} = R_{\odot}^{*}$	Δ*	F_{24}^{d}	SN R ₂₄ ⁴	$F_{90}d$	SN R _{t0} d	$T_{25,10}$ "	pv ¹ (%)	D^{\sharp}	η ^r
29P	Schwassmann-Wachman	n 786400	54 5.734	5.561	253.783	48.0	96.1	18.6	164.7*	4.61+5.22	37.3-11.8	$0.26^{-0.1}_{+0.2}$
2060	Chiron (1977 UB)	903321	16 13.463	13.239	54.410	99.0	145.2	23.4	98.1	7.57+1.09	233.3 44 4	1.13+0.1
5145	Pholas (1992 AD)	904081	6 18.614	18.152	3.080	66.0	<19.8		>80.2	> 6.56+2.38	< 154.5 42.8	$< 1.37^{+0.4}_{+0.4}$
5145	Pholas (1992 AD)	1266176	50 19.827	19.768	0.962	18.8	<10.1		>72.9	> 8.12+5.8	< 138.9	< 1.78
8405	Asbalus (1995 GO)	903936	50 7.743	7.240	202.394	99.0	155.7	23.6	141.8*	5.30+1.91	85.4 + 12.2	0.66 +0.2
8405	Asbalus (1995 GO)	1266048	8.748	8.388	73.814	99.0	82.7	11.9	127.4	5.59+1.00	83.2+10.4	0.93-0.2
10199	Charildo (1997 CU26)	880614	44 13.075	12.684	78,700	99.0	202.5	24.6	99.1	5.63+0.50	260.9 16.0	$1.17^{-0.1}_{+0.1}$
10199	Chariklo (1997 CU26)	90385	13.165	12.890	61.509	99.0	177.0	40.4	96.3	5.81+6.22	256.8 12.8	1.29 0 1
10370	Hylonome (1995 DW ₂)	903808	19.963	19.824	0.503	14.9	<10.2		>65.0	> 1.07+1.02	< 168.4 48.8	< 2.89 0.8
15820	(1994 TB)	904268	8 28.562	28.320	<0.062		<11.1		48.2	> 0.55+0.62	< 451.3 195.1	4.87
15874	(1996 TLas)	90357	35.125	34.604	0.380	13.5	22.0	4.4	55.6	3.50±	575.0	1.76
15875	(1996 TPgg)	880.563	32 26.491	26.250	0.689	17.9	<17.6		>62.7	> 1.97+1.88	< 310.9 48.5	< 1.89_+0.5
15875	(1996 TPgg)	1265945	56 26.625	26.113	0.426	14.6	<6.9		>67.5	> 6.49+2.56	< 171.2 45.3	< 1.36+0.4
20000	Veruna (2000 WR 106)	904576	60 43.205	42.830	<0.086	i	11.0	4.9	< 50.1	< 11.60 ^{+5.60}	> 621.2 - 158.1	> 1.73+0.6
26308	(1998 SM148)	1440256	50 36.411	36.087	0.105	15.9	5.2	9.4	56.8	6.33+1.6	279.8 28.4	1.48+0.1
26375	(1999 DE ₀)	904755	12 34.980	34.468	0.905	38.2	22.6	9.3	62.9	6.85	461.0 461.1	1.05+0.1
28978	Ixion (2001 KX16)	903347	72 42.731	42.448	0.584	16.6	19.6	3.5	60.1	15.65+12.00	573.1-141.0	0.82 0.2
28978	Ixion (2001 KX ₉₆)	1265971	42.510	42.058	0.290	7.9	<18.4		>54.9	> 12.03+	< 653.6	< 1.22
29981	(1999 TD ₁₀)	880537	16 14.131	13.945	4.629	31.6	19.5	7.2	87.9	4.40世紀發	103.7-12.2	1.64 8
31824	Elatus (1999 UOg)	904320	0 10.333	9.998	6.015	69.8	<12.4		>105.2	> 4.86+5.17	< 47.4 +13.8	< 1.46+0.6
31824	Elatus (1999 UOg)	1266124	48 11.125	10.826	8.596	99.0	<8.9		>118.3*	> 9.41+11.87	< 34.1+10.8	< 0.50+0.5
32532	Thereas (2001 PT12)	904443	9.813	9.357	25.938	99.0	32.7	4.8	122.3	8.93+5.95	60.8 + 12.5	0.86 0.3
32532	Thereas (2001 PT13)	1266023	24 9.963	9.685	23.722	99.0	46.8	10.3	106.5	4.28+1.09	87.8-9.4	1.50+0.5
38628	Haya (2000 EB111)	880811	29.326	29.250	3.630	69.4	57.2	10.9	67.9	4.78+0.96	546.5 47.8	1.10+0.1
38628	Haya (2000 EB173)	89372	16 29.325	29.210	3.400	69.0	52.9	28.4	68.0	5.22±8.2	523.1 349	1.09-88
47171	(1999 TC36)	903910	31.098	30.944	1.233	56.4	25.3	10.0	64.9	7.18±	414.6	1.17
47932	(2000 GN171)	902784	40 28.504	28.009	0.258	82	11.9	5.6	57.4	5.68+2.54	321.0 ±52.4	2.32+0.4
50000	Quaser (2002 LMgg)	1067641	0 43.345	42.974	0.279	5.5	24.6	4.2	52.5	19.86-7,06	844.4+206.2	1.37+0.3
52872	Okyrhoe (1998 SO2E)	880743	24 7.793	7,405	28,767	99.0	37.4	9.1	121.0	2.49-0.55	82.1-6.9 ±6.9	1.46+0.3
54598	Binner (2000 QC241)	904193	20 18.816	18.350	3.528	78.0	29.7	6.1	76.0	3.44 0.82	206.7 130-1	1.69+9-0
55565	(2002 AW197)	904371	12 47.131	46.701	0.155	7.7	15.0	6.7	51.9	11.77-2.00	734.6+115.4	1.26+0.2
55576	Amyeus (2002 GB10)	1776614	44 15.585	15.155	6.367	86.1	13.6	5.8	99.9"	17.98*3.76	78.3-123	0.64
55636	(2002 TX ₃₀₀)	1067691	40.975	40.729	<0.065		<11.1		48.4	> 17.26 1 2.5	< 641.2-3011	2.16
55637	(2002 UX ₂₅)	1067750	42.368	42.413	0.486	15.0	23.0	5.3	57.2	11.50 - 2.09	681.2+115.6	1.04+8-4
60558	Echaclus (2000 ECgg)	880896	50 14.141	13.736	4.901	84.7	15.5	5.0	94.0	3.83	83.6+15-8	1.25+8-8
65489	Ceto (2003 FX 128)	1776384	40 27.991	27.674	1.463	71.5	14.6	12.2	73.6	7.67 1.10	229.7+18.6	0.86+0.1
Number*	Name (Designation)*	AORKEY	R_0^*	Δ*	Pud	SN Ru ^d	Fro ^d	SN Road	T26.50"	pv ¹ (%)	D ^E	η ^ε
73480	(2002 PN34)	17762816	14.608	14.153	10.368	99.0	31.0	12.6	95.3	4.25+0.83	119.5-10.2	$1.10^{-0.15}_{+0.16}$
83982	Crantor (2002-00g)	9044224	14.319	13.824	2.276	58.6	<8.7		>89.8	> 8.60+8.25	< 66.7 10.2	< 1.44
84522	(2002 TCare)	13126912	47.741	47.654	0.054	6.5	18.0	3.1	44.8	3.08+2.68	1145.4 528.0	2.33
84922	(2003 VS ₂)	10680064	36,430	36.527	0.304	6.0	25.7	3.5	52.8	5.84+4.58	725.2 185.2	2.00
90482	Oreau (2004 DW)	13000448	47.677	47,442	0.329	32.4	26.6	12.5	53.1	19.72+5.40	946.3 72.3	1.08 8:88
90568	(2004 GVa)	13000960	38.992	39.007	0.166	18.2	17.5	9.2	51.4	8.05+	677.2	1.94
119951	(2002 KX(x))	10678016	39.585	39,197	<0.109		<11.7		51.2	> 8.09+9.55	< 561.6-181-5	1.91-9-99
120061	(2003-COu)	17764864	10.927	10.917	21 722	99.0	33.4	11.8	114.7	5.74+1.49	78.0-8.2	0.91 18:18
136108	(2003 EL 41)*	13803008	51.244	50,920	<0.022		78	5.3	-44.6	24	10.5	+0.20
136199	Eris (2003 UBasa)	15909632	96.907	95411	<0.014		27	40	<40.1	24	24	24
136472	(2005 EVa)*	13803776	51,884	51,879	0.296	21.1	14.6	9.4	54.8	40	- Ac	-
	(2002 MS ₄)	10678528	47,402	47,488	0.391	20.5	20.0	5.1	56.6	8.41+9.25	726.2 122-9	0.88 9.15
	(2003 AZau)	10679040	45.669	45.218	0.291	12.4	17.8	6.7	55.2	12.32+4.44	685.8 95-5	1.04 9-19

懸案のエリスは? 直径: D=2657.0km (+216.1 -208.0) 幾何学アルベド: pv=0.6891 (+12.24 -9.98)

ミリ波電波望遠鏡の熱観測結果とHSTの 直接撮像結果のちょうど中間

外縁天体の大きさとアルベド

アルベド ジオメトリック

6

あかりによる太陽系外縁天体と特異小惑星の 中間-遠赤外線測光観測

AKARI | ASTRO-F

- ・研究の<u>まとめ</u>
- あかりによる外縁天体の遠赤外線・中間赤外線測光を行った。 測光観測から大きさとアルベドを求めた。 大きな遠方天体は高アルベドの傾向がありそうである。
- 今後は
- 分光観測(2.5-5um)の解析とサーベイデータ(10um)の解析へ

<u>あかりの中間赤外線の全天サーベイデータ</u>

裸の彗星核 (P/2006 HR30): 熱放射ライトカーブ

1) Deep Impact spacecraft, 2) Spitzer-S.T.

裸の彗星核の熱放射ライトカーブ: 2例のみ

Rotationally Resolved 8 35 Micron *Spitzer Space Telescope* Observations of the Nucleus of Comet 9P/Tempel 1 Lisse et al. (2005)

Spitzer Space Telescope observations of the nucleus of comet 67P/Churyumov-Gerasimenko Lamy et al. (2008)

Spitzer 宇宙望遠鏡による二例のみ

彗星核の温度マッピング: 探査機 Deep impact

120 m/pixel

Groussin et al. 2007

熱慣性値 (Γ = √ κρc_P)の導出

Tempel 彗星の彗星核の熱慣性値 \rightarrow 0 ~ 10 [Jm⁻²s^{-0.5}K⁻¹] Groussin et al. 2007

Deep Impact探査機

・レゴリス小惑星 「=10-15 (Mueller et al.1999)

・月 「=39 (Keihm 1984)

•Itokawa
Γ=750
(Mueller, Sekiguchi
et al.2005)

·金属質 「=10000 (Mueller et al.2005)

熱慣性:J m⁻² s^{-0.5} K⁻¹

人類の偉大なる一歩から読み取る月のレゴリス

"That's one small step for a man, one giant leap for mankind. " Neil Alden Armstrong

 ・表面の土砂の空隙率や砂利の粒径を推定 はやぶさ2のTIR (Thermal InfraRed Imager) を念頭したサイエンスへ

•ちょっと手をつけかけていた私の興味

オールトから落っこちてきたかもしれない岩石天体

特異小惑星/コマなしの彗星核: P/2006 HR30

P/2006 HR30

	軌道半長径: 近日点距離: 遠日点距離: 離心率: 軌道傾斜角:	a=7.82 AU (木星-土星) q=1.23 AU (地球-火星) Q=14.4 AU (土星-天王星) e=0.84 i=31.88 deg.
Saturn	Marge	
	CEar Mercury	Jupiter
P/2006 HB80		

特異小惑星/コマなしの彗星核: P/2006 HR30

もともと特異小惑星として発見・登録される Saturn その後のモニター観測で一時期だけ彗星活動が認められる その後、ずっとコマや尾を持たない小惑星状として観測される → 大部分の期間は小惑星として観測される彗星登録天体 → 裸の彗星核天体

コマに隠されて見ることのできない「彗星核」を直接観測できる Mars ← 普通の彗星では無理

> Mercury Earth

> > 軌道半長径: 近日点距離: 遠日点距離: 離心率: 軌道傾斜角:

a=7.82 AU q=1.23 AU Q=14.4 AU e=0.84 i=31.88 deg.

たな小惑星グル・	ープ			Jewitt	t (AJ, 20
ダモクロイド	a ^a		i	q^{d}	
Name	(AU)	e^{b}	(deg) ^c	(ÂU)	$T_{\rm J}^{\rm e}$
20461 Dioretsa (1999 LD31)	23.777	0.900	160.4	2.390	-1.542
2000 HE46	23.985	0.902	158.38	2.355	-1.508
1999 LE ₃₁	8.163	0.472	151.88	4.310	-1.310
C/LINEAR (2002 CE10) ^f	9.816	0.791	145.46	2.047	-0.853
(65407) 2002 RP120	55.940	0.956	119.11	2.473	-0.845
2000 DG ₈	10.786	0.793	129.43	2.231	-0.631
C/LONEOS (2001 OG108)f	13.30	0.925	80.26	0.994	0.597
2000 AB ₂₂₉	52.497	0.956	68.72	2.292	0.773
1997 MD ₁₀	26.740	0.942	59.04	1.543	0.975
C/LINEAR (2002 VQ 94)f	218.161	0.969	70.50	6.800	1.095
5335 Damocles (1991 DA)	11.834	0.867	62.10	1.573	1.143
2002 XU ₉₃	67.426	0.689	77.88	20.983	1.173
1998 WU ₂₄	15.221	0.907	42.56	1.419	1.404
1999 XS35	18.079	0.948	19.47	0.948	1.411
2000 KP ₆₅	88.323	0.963	45.62	3.274	1.613
1996 PW	287.127	0.991	29.76	2.547	1.732
2003 WG ₁₆₆	5.160	0.644	55.41	1.838	1.873
2003 WN ₁₈₈	14.566	0.849	26.94	2.200	1.933
(15504) 1999 RG33	9.634	0.775	35.13	2.164	1.946
2004 DA ₆₂	7.709	0.467	52.23	4.107	1.993

)

P/2006 HR30

Mare Pusercury	
P/2006 HB80	
$\frac{1}{7} = \frac{a_{\rm J}}{2} + 2 \left[\frac{a}{2} \left(1 - e^2 \right) \right]^{\frac{1}{2}} \cos(i) \implies 1.79$)

どこからやって来たか

ティスランパラメータ: T」によ って天体の起源を評価する

$$T_{\rm J} = \frac{a_{\rm J}}{a} + 2 \left[\frac{a_{\rm J}}{a} \left(1 - e^2 \right) \right]^{\frac{1}{2}} \cos(i)$$

たな小惑星グル-			Jewitt (AJ, 20		
ダモクロイド	a ^a		i	$q^{ m d}$	
Name	(AU)	e ^b	(deg) ^c	(AU)	$T_{\rm J}^{\rm e}$
20461 Dioretsa (1999 LD31)	23.777	0.900	160.4	2.390	-1.542
2000 HE ₄₆	23.985	0.902	158.38	2.355	-1.508
1999 LE ₃₁	8.163	0.472	151.88	4.310	-1.310
C/LINEAR (2002 CE10) ^f	9.816	0.791	145.46	2.047	-0.853
65407) 2002 RP ₁₂₀	55.940	0.956	119.11	2.473	-0.845
2000 DG ₈	10.786	0.793	129.43	2.231	-0.631
C/LONEOS (2001 OG108)f	13.30	0.925	80.26	0.994	0.597
2000 AB ₂₂₉	52.497	0.956	68.72	2.292	0.773
1997 MD ₁₀	26.740	0.942	59.04	1.543	0.975
C/LINEAR (2002 VQ 94) ^f	218.161	0.969	70.50	6.800	1.095
5335 Damocles (1991 DA)	11.834	0.867	62.10	1.573	1.143
2002 XU ₉₃	67.426	0.689	77.88	20.983	1.173
1998 WU ₂₄	15.221	0.907	42.56	1.419	1.404
1999 XS ₃₅	18.079	0.948	19.47	0.948	1.411
2000 KP65	88.323	0.963	45.62	3.274	1.613
1996 PW	287.127	0.991	29.76	2.547	1.732
2003 WG ₁₆₆	5.160	0.644	55.41	1.838	1.873
2003 WN ₁₈₈	14.566	0.849	26.94	2.200	1.933
15504) 1999 RG33	9.634	0.775	35.13	2.164	1.946
2004 DA ₆₂	7.709	0.467	52.23	4.107	1.993

P/2006 HR30 (Siding-Spring)2006, August 21.98Average of 37 unfiltered exposures, 120 seconds eachNewton, D= 0.45m, f/4.4 + CCD FLI IMG-1001EG. Sostero & L. Donato (Remanzacco Obs., Italy)http://www.afamweb.comhttp://cara.uai.it

E associazione rajulana di astronoma a.P.B.M. a Meteorologia

False colors palette, zoom 2x

Delta= 1.12 AU, R= 2.04 AU, Phase= 15.6 deg

P/2006 HR30 (Siding Spring) 2006, Aug. 31.81 Average of 22 unfiltered exposures, 120 seconds each Newton, D= 0.45m, f/4.3 + FLI IMG1001E L. Donato and V. Gonano (AFAM-Remanzacco Obs) http://cara.uai.it http://www.afamweb.com

CAR

N

Azimuthal median subtraction, 2x

P/2006 HR30 の可視光ライトカーブ ^{木曽観測所}

自転周期

東大地惑:縫田修論

周期は P=73.2h

不活動彗星:裸の彗星核

Good sample for remnant panetesimal

コマに隠れて見えない彗星核を地上から直接観測できる唯一 の手段(地上以外→探査機)

小さく暗いため、地球(及び太陽)に近付くものだけ、またその 期間だけ観測可能になる。

数は多くないが、毎年見つかっているので、今後はPan-STARRSのような超広視野の大規模サーベイが走り出すと、 このようなオールト雲小惑星又は不活動彗星核がコンスタン トに発見される可能が大きい。

P/2006 HR30 のあかりIRC近赤外線分光 (2.5—5µm)

裸の彗星核の近赤外分光

小惑星の標準熱モデル(STM)を適用し、熱放射成分を差し引きした結果 → 太陽光反射成分のみ

カッシーニ探査機による土星の氷衛星の観測 同じ波長域のスペクトル (これ以外に同じ波長では比べられない)

(Cruikshank et al. 2008)

カッシーニ探査機による土星の氷衛星イアペタスの観測

<u>カッシーニ探査機の近赤外分光結果との比較</u>

P/2006 HR30、土星の衛星 及び 実験室 PAH データと比較

カッシーニ探査機の近赤外分光結果との比較

P/2006 HR30、土星の衛星 及び 実験室 PAH データと比較

最近の太陽系トピックス

拡がり: 128-207 土星半径 幅: 600万km 厚さ: 120万km 傾き: 27度

SST news, Nature news アストロアーツ天文ニュース

SSTによる新たな 巨大な土星の環の発見

Dust Ring

Infrared View of Saturn's Largest Ring NASA / JPL-Caltech / A. Verbiscer (Univ. of Virginia) Spitzer Space Te

Saturn

ひろがり: 128-207 土星半径

Phoebe 逆行不規則衛星

Titan

Iapetus アルベド:0.04-0.5

Saturn's Largest Ring

Verbiscer et al. 2009

まとめ

あかりによるP/2006HR30の近赤外線分光

•観測

特異小惑星として発見され、一時期だけ彗星活動が認められた 裸の彗星核天体P/2006HR30の近赤外線分光観測を行った

·結果

暫定解析の結果、土星の氷衛星(一つは逆行するPhoebe)で観測された PAH(多環芳香族炭化水素)が彗星核にも存在する可能性

(→ 土星最大の環の関連)

・今後の展望

あかりによる小惑星観測(主にメインベルトとNEAs)の今後の解析結果と 比較検討が望まれる

・現状の問題点

分光結果には熱放射成分の寄与が大きいため、太陽光反射の吸収スペク トルを議論するには、この波長の熱放射率(emissivity)を考慮に入れる 必要性がある

特異小惑星/コマなしの彗星核: P/2006 HR30

もともと特異小惑星として発見・登録される Saturn その後のモニター観測で一時期だけ彗星活動が認められる その後、ずっとコマや尾を持たない小惑星状として観測される → 大部分の期間は小惑星として観測される彗星登録天体 → 裸の彗星核天体

コマに隠されて見ることのできない「彗星核」を直接観測できる Mars ← 普通の彗星では無理

> Mercury Earth

> > 軌道半長径: 近日点距離: 遠日点距離: 離心率: 軌道傾斜角:

a=7.82 AU q=1.23 AU Q=14.4 AU e=0.84 i=31.88 deg.

|観測:エリスや外縁天体のサイズ(&アルベド)を求める

2006年末--2007年:FIS(遠赤外線サーベイ観測装置) <u>観測天体:16天体</u>

- ケンタウルス天体(4天体) Chiron, Chariklo, Thereus, 2003 CO1
- 準惑星(候補)TNOs (3天体) Eris, Haumea, Makemake
- 準惑星にされていない散乱TNOs (2天体) Sedna, 2005 RN43
- 他のTNOs (7天体)

Huya(2000 EB173), Orcus(2004 DW), 2002 TX300, 2002 UX25, 2004 GV6, 2005 RM43, 2005 RR43

2007年:IRC(近・中間赤外線カメラ 観測装置)

- ケンタウルス天体 (5天体) Chiron, Asbolus, Thereus, Amycus, 2003 CO1
- ▶ 2006 HR30 (グリズム分光)

打ち上げ後のあかり感度

観測天体:2006 HR30 特異小惑星~不活動彗星核 メインベルト以外の小惑星 ・ 地球近傍小惑星(アポロ、アモール、アテン) 地球軌道近くを公転 ・トロヤ群小惑星 木星軌道を公転 遠方小天体(TNOs) 海王星以遠の軌道 ケンタウルス天体 外惑星領域を黄道面近くで公転 彗星軌道小惑星(ダモクロイド) 軌道傾斜角が大きく、オールト雲彗星のような軌 道を持つ特異小惑星

P/2006 HR30 あかりIRC近赤外線分光 (2.5—5um)

- あかりの観測波長(2.5—5um)は地球大気の 窓ではないために、地上観測は存在しない
- →これまでこの波長域では分光観測例はない
- →大気圏外の観測のみ(惑星探査機と今回の あかり)
- →カッシーニで観測された土星の氷衛星との比 較を行う

探査機との直接比較が可能となった

天文地上観測としては他では類を見ない科学研究

Itokawa: 同一の装置(ESO3.6m+TIMMI2)によって、もっとも集中的に地上での熱観測がなされた小惑星

本研究のまとめ

•初めて地上の熱赤外の観測にTPMを適用して探査機データと 直接比べることが可能となった

•多波長(今回4波長)、多位相角(太陽直下時、上弦・下弦の月 状態時)での観測データの取得によって小惑星の大きさ、放射 フラックス、表層熱特性の高精度での推定が可能

•フラックスを予想するモデルとしての有効性を検証

Thermo-Physical Model (TPM)

ISO, Akari(ASTRO-F)でのフラックスキャリブレーショ ンに用いられる小惑星の放射フラックスモデル

いろいろ位相角、多波長でのデータが必要であるが、フラックスを予想するモデルとしての有効性を確証 (精度は1%以内)

低温天体からの熱フラックス=ALMA

スピッツァーによる TNO (2002AW197)の観測 (2005)

24 microns

70 microns

Kuiper Belt Object 2002 AW197

NASA / JPL-Caltech / J. Stansberry (Univ. of Arizona)

直径: D=734.6km (+116.4 -108.3) 幾何学アルベド: pv=0.1177 (+0.0442 -0.0300)

Spitzer Space Telescope • MIPS

Image Credit: J. Stansberry (Univ. of Arizona) Wavelength: 24 (blue image), 70 (red image) microns Exposure Date: 2004 April 13 Image Scale: 2.5 x 2.5 arcmin

カイパーベルト天体のサイズ

Physical Quantities of Planetesimals

Basic Parameters for Formation Theory of Planetary Systems

However, TNOs unresolved Typical apparent size = 0".02 TNO: 19308 (1996 TO66) Sekiguchi et al. A&A, 2002

- Shape
- Mass (=density)
- Composition
- Temperature
- Size (& albedo)

観測:エリスや外縁天体のサイズを求める

2006年末一2007年:FIS(遠赤外線サーベイ観測装置) <u>観測天体:16天体</u>

ケンタウルス天体 (4天体)

Chiron, Chariklo, Thereus, 2003 CO1

- > 準惑星(候補)TNOs (3天体) Eris, Haumea, Makemake
- 準惑星にされていない散乱TNOs (2天体) Sedna, 2005 RN43
- 他のTNOs (7天体)
 Huya(2000 EB173), Orcus(2004 DW), 2002 TX300, 2002 UX25, 2004 GV6, 2005 RM43, 2005 RR43

Size & Albedo of EKBOs

Largest known Kuiper Belt objects

