2012/11/30

減光曲線から探る星間ダストの 多様性

(Variation of interstellar dust probed by extinction curves)

<u>野沢貴也 (Takaya Nozawa)</u> & 福来正孝 (Masataka Fukugita)

(Kavli IPMU, University of Tokyo)

1. Extinction curve

Extinction curve: wavelength-dependence of extinction caused by interstellar dust grains

 essential for knowing the intrinsic SEDs of galaxies

 depends on physical and optical properties of dust

2. Interstellar dust models in MW

3. CCM relationship and Rv

4. Variety of interstellar extinction curves

5. Comparison between FM07 and CCM89

black: 1σ range of the FM07 data red: CCM curve with Rv = 2.75 blue: CCM curve with Rv = 3.60 green: extinction curve for the case of Rv=3.1 by WD01 fully consistent in UV region Results from CCM formula with Rv = 2.75-3.60 are 0.02-0.06 mag higher than the 1 σ range in JHK WD01 model is based on result by Fitzpatrick (1999), which is similar to CCM curve w/ Rv=3.1

6. Dust model

$$A_{\lambda} = 1.086 \sum_{j} \int dl \int_{a_{\min,j}}^{a_{\max,j}} \pi a^2 Q_{\lambda,j}^{\text{ext}}(a) n_j(a) da, \quad \text{(sphere)}$$

(spherical grain)

• power-law size distribution (amin < a < amax)</pre>

$$n_j(a) = n_{\rm H} K_j a^{-q_j},$$

$$K_j = \frac{f_{i,j}}{V_j} \left(\frac{A_i w_j m_{\rm H}}{\nu_{i,j} \delta_j} \right),$$

amin = 0.005 um (fixed)

q and amax : parameters (same for all grain species) fi,j → a fraction of an element *i* locked up in a grain *j*

Solar abundance: Grevesse & Sauval (1998) all of Fe (and Mg and Si) are locked in dust grains

- grain species considered in this paper
 - graphite, glassy carbon, amorphous carbon, SiC
 - astronomical silicate (MgFeSiO4), Mg2SiO4
 - Fe, Fe₃O₄, FeS

7. Illustration of contour plots

7-1. Contour plots for fgra/fsil = 1.0

contour plots of amax and q that fulfill the 1σ range of FM07 data for fgra/fsil = 1.0 (Mgra/Msil = 0.78) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band contour plots of amax and q that fulfill the 1σ range of CCM result for fgra/fsil = 1.0 (Mgra/Msil = 0.78) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band

7-2. Contour plots for fgra/fsil = 0.5

contour plots of amax and q that fulfill the 1σ range of FM07 data for fgra/fsil = 0.5 (Mgra/Msil = 0.39) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band contour plots of amax and q that fulfill the 1σ range of CCM result for fgra/fsil = 0.5 (Mgra/Msil = 0.39) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band

7-3. Contour plots for fgra/fsil = 0.2

contour plots of amax and q that fulfill the 1σ range of FM07 data for fgra/fsil = 0.2 (Mgra/Msil = 0.16) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band contour plots of amax and q that fulfill the 1σ range of CCM result for fgra/fsil = 0.2 (Mgra/Msil = 0.16) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band

8-1. Piled-up contour for graphite-astro.sil

8-2. Piled-up contour for carbon-astro.sil

amorphous C \rightarrow up to ~60 % glassy C \rightarrow up to ~50 % SiC \rightarrow up to ~15 %

more than 40 % carbon are needed to be locked in graphite

Dashed line (fC, grain = 0.7)

- gra-asil (fC, gra /fC, grain = 1.0)
- **gra-aC-asil (**fC, aC /fC, grain = 0.3)
- gra-gC-asil (fC, gC /fC, grain = 0.3)
- gra-SiC-asil (fC, SiC /fC, grain = 0.1)

8-3. Piled-up contour for carbon-astro.sil

Fe → up to 100 % Fe3O4 → up to ~80 % FeS → up to 100 %

many Fe atoms are not always needed to be locked in silicate

Dashed line (fC, gra = 0.7)

- ' gra-Fe-fore (fFe, Fe /fFe, grain = 1.0)
- gra-Fe3O4-sil

(fFe, Fe3O4 /fFe, grain = 0.8) gra-FeS-sil (fS, FeS = 1.0)

9-1. Dust properties in SMC

9-2. Dust properties in SMC

10. Summary

- The observed ranges of NIR extinction from FM07 do not match with the results from the CCM formula
 There is no combination of q and amax that satisfy the observed ranges when CCM results are adopted
- \cdot For graphite-silicate model, the values of q and amax that satisfy the 1 σ extinction ranges are, respectively,
 - 3.2 < q < 3.7 and 0.19 um < amax < 0.34 um
 0.56 < fC,gra < 1.0 for MW
 - 3.2 < q < 3.8 and 0.19 um < amax < 0.35 um
 0.04 < fC,gra < 0.41 for SMC
- ~30 % of graphite can be replaced with amorphous carbon and glassy carbon
- Most of Fe atoms can be locked in Fe, Fe₃O₄, and FeS