地上30um帯による 双極状惑星状星雲の低温ダスト観測

浅野健太朗(東京大学) 宮田隆志,酒向重行,上塚貴史,中村友彦,内山瑞穂, 岡田一志,小西真広(東京大学),越田進太郎(カトリカ大学)

Introduction

- What is the origin of dust in our galaxy?
 - \rightarrow AGB stars are one of the important sources of interstellar dust.
- PNe are the final stage of stellar evolution.
- PNe record the mass-loss history in the AGB phase.
- It is important to observe the dust around planetary nebulae.

AG

Dust souces of bipolar PNe

- Massive AGB creates a mount of dust.
- Initial mass (Pottasch+ 2006) :

 1^{4} M_☉ → round, elliptical PN

 $4^{8} M_{\odot} \rightarrow bipolar PN$

Bipolar PNe are important dust sources.

→ Where is the dust in massive AGB phase?
The spatial distribution of cold dust in the bipolar PN have not been well understood so far.

Massive torus in the bipolar PN

- NGC 6302 is one of the most studied bipolar PNe (e.g. Matsuura+ 2005)
- Initial mass : 5Mo
- A dark lane (a dust torus) can be seen in the central region. \rightarrow Massive dust torus $M_{dust} = 3.0 \times 10^{-2} M_{\odot}$
 - T_{dust} ~ 70K

All bipolar PNe have massive dust torus?

Mz3 has a massive torus?

Mz3 HST WFPC2

• Initial mass > 4M_☉ (Pottasch+ 2005)

 No dark lanes at the center of Mz3.
 → A massive or light dust torus? Or not?

Previous studies of Mz3

- Warm component in the central region : $M_{dust} = 1.1 \times 10^{-6} \text{ M}_{\odot}$ (Smith+ 2005, with ESO3.6m) - A light dust disk in the central region : $M_{dust} = 0.9 \times 10^{-5} \text{ M}_{\odot}$ (Chesneau+ 2007, with MIDI)
- Cold components in the lobes : $M_{dust} = 2.6 \times 10^{-3} \text{ M}_{\odot}$ (Smith+ 2005, with IRAS) \rightarrow IRAS can't resolve the central disk (torus) and the lobes.

Observations

- Object : bipolar PN Mz3
- Instrument : miniTAO / MAX38
- Wavelength : 18.7, 25, 31.7 um

Wavelength [um]	date	Intergration Time [s]
18.7	2011.5.28	400
25.0	2012.10.21	1000
31.7	2011.5.28	3000

miniTAO / MAX38

Bolivia

- miniTAO
- 1.0m telescope
- Atacama desert in northern Chile
- The summit of Cerro Chajnantor (5,640m)
 - \rightarrow The best site for infrared astronomy Chile
- MAX38
- Our own developed mid-infrared camera
- The unique instrument which has an imaging capability at 30 micron bands from the ground
- Wavelength coverage : 8 38 um
- Spatial resolution : 8" at 30 um

Co.Chajnantor (5,640m)

iniTAO

Results

- Spatially resolved images of Mz3 at 18 and 25, 31 um were obtained.
- A bright peak is seen at the center of the 18 um image.
- The 18-um image well resembles
 the 17-um image obtained by
 Smith (2005).
- The central region is also bright in the 25,31-um image.

Analysis : psfphotometry

PSF photometry : the fluxes of the central region at 18, 25, 31 um

The 31um flux of the central region is much larger than the expected value

Navelength [um]	Flux [Jy]	Instrument		
8.9	34.3	ESO3.6/TIMMI2		
11.9	36.9	ESO3.6/TIMMI2		- Inte
17.0	30	ESO3.6/TIMMI2		
18.7	55±7	miniTAO/MAX38		luur
25.0	117±15	miniTAO/MAX38		
31.7	157±40	miniTAO/MAX38	1 10 10 Wavelength (μ m)	0

Analysis : mass estimation

- Masses of the warm/cold component at the center are estimated by a graybody fitting with λ^{-1} emissivity.
 - We apply the equation of Smith (2005) to this results.
 - $M \downarrow dust = (a\rho/3\sigma Q \downarrow e (T \downarrow dust) \uparrow 4) L \downarrow dust$

\rightarrow Massive dust torus in Mz

			-1.	-1/
	parameter	val	ue	
а	Grain size	0.05-1.	0 [um]	6
ρ	Density	2.25 [g	g/cm³]	
σ	Stefan-Boltzman	5.7e-8 [W	//m²/K⁴]	
Q _e	Emissivity	Gilman	- 1974	3
T _{dust}	Temperature	70	К]	
L _{dust}	Luminosity	540	L⊙]	
	١٢J			

Massive dust torus in Mz3

Similar torus in bipolar PN:M2-9

Bipolar PN : M 2-9

•

- Similar structure to Mz3
- initial mass > 2M☉ (Palla+ 1999)
- No dark lanes at the center region
- A light disk in the central region : $M_{dust} = 1.5 \times 10^{-5} M_{\odot}$ (Lykou+ 2011, with MIDI)
- Double ¹²CO 2-1 ring were detected (Castro2012)
- Outer ring : $M_{gas} = 1.0 \times 10^{-2} M_{\odot}$

Discussion : cold torus

- Observation ... MAX38 couldn't resolve the cold torus with 31um
 - MAX38 31um resolution : 8 arcsec ~ 10000 AU

 \rightarrow cold torus < 5000 Al

- Thermal equilibrium : the cold torus distance from the central star \sim 11000 AU
 - optically thin
 - normal size dust

parameter	Value
Dust	Astronomical silicate (Draine & Lee 1948)
Grain shape	Spherical
Grain size	0.005-0.25 [um]
Size distribution	a ^{-3.5}
Dust temperature	70 [K]
Luminosity of star	10000 [L⊙]

possible explanations

1) Extinction of stellar radiation by the inner disk

2) Growth of dust grains in the torus

2) Growth of dust grains in the torus ?

Summary

- We successfully obtained spatially resolved images of Mz3 at the 18.7 and the 20um, and the 31.7um bands.
 - The cold component of T~70K was found at the central region.
- The mass of the torus (1.0x10⁻³ M_o) is 100 times higher than the previous studies.

 Assumptions of the dust grain growth or the existence of optically thick inner disk can explain the unresolved dust torus with MAX38 / 31 micron.

