Supernova remnants in AKARI mid-infrared all sky survey

2012.11.29.; Kobe

Ho-Gyu Lee

U. of Tokyo

Takashi Onaka, Bon-Chul Koo, Itsuki Sakon, Ryou Ohsawa, TamamiMori, Chikako Yasui, Tomohiki Nakamura

Introduction : Supernova remnant & dust

- Amount of dust in SNR?
 - \blacksquare + Newly formed dust in ejecta ~ 0.1 1 M_{\odot}
 - SN model calculation (Nozawa et al. 2003)
 - Observations of high-redshift galaxies (Morgan & Edmunds 2003 ...)
 - + Dust in swept-up surrounding medium
 - Assume $n_o = 1 \text{ cm}^{-3}$, ...

R = 6 pc, dust mass ~ 0.1 M_{\odot} (Note: M ~ R³)

Cartoon from http://heasarc.gsfc.nasa.gov/ docs/objects/snrs/cartoon.html

AKARI IR satellite

- IR surveyor/telescope
 - **6**8.5 cm
 - 2006. 2. 2008. 8. (+ warm mission 2010. 2.)
 - 3 NIR + 2 MIR + 4 FIR band imaging (~10')
 - NIR, MIR spectrometry

All sky survey data

SNR images from AKARI all sky survey : Young SNRs

Similar progenitor types

Cas A

■ Type IIb (Krause et al. 2008)

G11.2-0.3, G292.0+1.8

Supernova Remnant	Supernova Type	Age (yr)	P ₀ (ms)	<i>B</i> (10 ¹² G)
Crab	IIP	950	20	4
3C 58	IIP	2400	50	4
PSR 0540-69	Ib/c	800	40	5
Kes 75	Ib/c	1000	30	48
MSH 15-52	Ib/c	1700	10	14
G292.0+1.8	IIL/b	3200	40	10
G11.2-0.3	IIL/b	1600	60	2
G54.1+0.3	IIP, Ib/c	1500	100	10
G292.2-0.5	IIP, Ib/c	1700	≪200	41

Chevalier 2005

Spectral shapes of three SNRs

SN Type IIL/b (Chevalier 2005)
 Dust mass < 1M_o

 $M_{d,h} \sim 3 \times 10^{-3} M_{\odot}$, $T_h \sim 99 K$ (Sibthorpe et al. 2011 ; Additional cold dust?) M_d ~ 8.8 x 10⁻³ M_o (Andersen et al. 2011 ; Background issue?)

 $M_{d} \sim 4.8 \times 10^{-2} M_{\odot}$, T ~ 47 K (Lee et al. 2009)

Dust formation?

- Measured dust masses at three SNRs
 - **D**ust mass $< 1 M_{\odot}$
 - They are total dust mass !
 - Swept-up surrounding dust + ejecta dust
 - Amount of newly formed ejecta dust is small
 - Possible undetected cold dust?
 - Cannot rule out
 - In such case, dust mass can be large (e.g. > $1M_{\odot}$)
- Detecting newly formed dust in AKARI survey
- \Rightarrow Finding SNR which is far brighter than above three!
- If none, no dust at observed epoch of SNR evolution
 Destruction by reverse shock (Nozawa et al. 2011)
 SN type should be considered

MIR bright SNRs ($0^{\circ} < I < 40^{\circ}$; ~15/~100)

Some of them are bright at 9 & 18 um: SNRs in dense medium

Bright at broad IR bands

Kes17 Spitzer & AKARI observations

Bright western shell (3-160um)

Dust in western shell

Two Temperature modified BB fit
 Grain: Milky way (Draine 2003)

Luminous FIR emission or Large amount of dust!
 Note: hot gas mass: 8-15 M_o (XMM, Combi et al. 2011)

Possible origin of FIR emission

Assuming clumpy structure

- H2 clump + less dense inter-clump (10²-10⁴ cm⁻³ ?)
- Shock-heated dust in swept-up inter-clump medium
 - Large grain size

 $T_{eq}(K) \approx 0.60 n_e^{0.168} a^{-0.168} (\mu m) T^{0.252}$ a $\uparrow \Rightarrow T_d \downarrow$ (Dwek & Arendt 1992)

- Ejected dust from evaporating cloud
 - Efficiency
- Shock becomes radiative and its radiation illuminates dust
 - Southern shell

Summary

- SNRs in AKARI all sky survey
- Three young SNRs
 - SN type IIL/b
 - Small amount of dust
 - If newly formed dust exists, such SNR may be bright even in AKARI survey in general !
- SNRs in dense medium
 - Bright IR emission
 - Bright at 9 and 18 um
 - Mechanism of bright FIR is unclear
 - If shock-excited, it suggests large grain size