Studying the Universe and the Earth from space with JEM-EUSO & Micro-UVT missions.

21-11-12

M. Casolino RIKEN Advanced Science Institute INFN Rome Tor Vergata

JEM-EUSO Collaboration

13 countries, 77 institutions, >250 members

- •Korea, Mexico, Japan, Russia, USA,
- •*Western Europe*: Bulgaria, France, Germany, Italy, Poland, Slovakia, Spain, Switzerland
- Leading institution: Riken, Japan Principal Investigator: Piergiorgio Picozza (also PI of PAMELA)

+other National Space Agencies

Previous balloon and space-borne experiments

JEM-EUSO Astronomical and Terrestrial Observatory

A. Science

A1. Fundamental particle physics and Big Bang Cosmology

- Look beyond the Cosmic Microwave Background veil
- Why is the universe made of matter?
- What happened to the antimatter?
- Are there topological defects?
- Is there a Dark Matter component of ultra-high energy cosmic rays?

A2. Particle physics at the highest energies ξ^{10^4}

- Beyond LHC threshold
- Extragalactic Astronomy:
 - 10kpc (Galaxy) vs 100Mpc (extragalactic)
- Door to unknown phenomena:
 - Is Lorentz invariance valid? Has the Universe a preferred direction?
 - String physics

A3. Astronomy with charged cosmic rays

Extragalactic Astronomy

Cosmic rays are not bent by magnetic fields

- Where do Ultrahigh energy cosmic rays come from?
- How are they produced^
- Is there a difference
 between Southern
 (auger) and
 Northern (Telescope
 array) hemispheres?

Astronomy with charged cosmic rays

Extragalactic Cosmic rays

> 120k light year 40kpc

Our solar system

Observation range

A4. Study and monitor of atmospheric phenomena

- Transient luminous effects
- Lighting, auroae
- What are the formation processes on time scale of micro-milliseconds?
- Are they caused by cosmic rays?
- Multi-wavelength
- Multi detector observation

A5. Crew protection and planetary defense

Figure 1. Diagram of size versus mass contains some known objects of the observable universe and shows the significance of the meteoroid complex. Meteoroids with sizes of tens and hundreds of meters are the least known bodies of the solar system.

log of mass in [grams]

A. Cellino et al. – Planetary Defense Conference, Bucharest, May 9-12, 2011

A6. Earth observation and environmental monitoring

- Multi-wavelength monitoring of the Earth
- High spatial and temporal resolution
- Night UV map since Apollo and OGO-4 times, micros precision
- Detect cloud, oil spills, plankton population, pollution, ozone layer, cloud cover...
- Cross-correlation with other devoted detectors (GLIMS)

Turin

B. Instruments

- 1. JEM-EUSO (2017)
- 2. Ground Test at Telescope Array site. (2013)
- Balloon flights (3) from Canada (French Space Agency CNES) 2014-
- 4. Prototype from ISS: Micro-UVT

B1. JEM-EUSO: refractor tel. from ISS

JEM-EUSO Concept of Operations

JEM-EUSO will be the first instrument to make a nearly uniform all-sky survey of extremely energetic cosmic rays. JEM-EUSO will measure the energies and arrival directions of these cosmic rays, then map them onto the celestial sphere so that correlations with local extragalactic matter distributions and possibly nearby sources can be made. Using a collecting power nearly 10 times larger than any existing experiment, JEM-EUSO will enable an investigation of the nearest cosmic accelerators and possibly the identification of individual acceleration sites. 21

Parameter	Value			
Launch date	JFY 2016			
Mission Lifetime	3+2 years			
Rocket	H2B			
Transport Vehicle	HTV			
Accommodation on JEM	EF#2			
Mass	1938 kg			
Power	926 W (op.) 352 W (non op.)			
Data rate	285 kbps (+ on board storage)			
Orbit	400 km			
Inclination of the Orbit	51.6°			
Operation Temperature	-10° to 50°			

Potential JEM-EUSO instrument locations on ISS Kibo module

JEM-EUSO

an instrument with unprecedented characteristics:

2 tons, 2.5m lenses

I. Detector size 10¹² ton
II. Aperture: 10⁶ km² tilt
II. Energy of acceptance (10²⁰ - 10²¹ eV)
III. Multi-band field of view:
UV Focal surf: 330-400 nm
Visible camera: 700, 530, 470+-50 nm
Infrared camera: 1008+-10 nm

UV: 300kch VIS:300kch*2 IR: 300kch*2

Instrument breakdown and International role sharing

- Airglow:
- Calibration of telescope:

(slow-data)

(Lidar)

JEM-EUSO Field of view in Nadir and Tilt Mode

- International Space Station
- Orbiting at ~400 km in ± 51.6 degrees latitudes

-Covers both northern and southern hemispheres

-Flight in varying geomagnetic field (~0.6 gauss) around orbit

 Viewing night atmosphere in ~500 x 400 km area (nadir mode)

-Wide FOV allows to measure entire slowly developing showers

-Target volume exceeding an order of 10¹² tons

UV Signal of a proton shower (10²⁰eV, 60 deg)

Fiducial volumes and "golden events" for overlap at low energies

Overlap and match spectra with Auger and TA

Comparative exposure with ground observatories

Observatory	Aperture km² sr	Status	Start	Lifetime	Duty cycle	Annual Exposure km² sr yr	Relative to Auger
Auger	7,000	Operations	2006	4 (16)	1	7000	1
ТА	1,200	Operations	2008	2 (14)	1	1,200	0.2
TUS	30,000	Developed	2012	5	0.14	4,200	0.6
JEM-EUSO (E≈10 ²⁰ eV)	430,000	Design	2017	5	0.14	60,000	9
JEM-EUSO (highest energies) Tilted mode 35°	1,500,000	Design	2017	5	0.14	200,000	28

Cosmic-Ray and Earth Observation modes

Cosmic Rays

Need dark (<20-25 moon), no big towns Duration <300 mus Few photons

Atmospheric and Earth Observation Sciences

Tolerate more background Duration >300 mus >100 photons

JEM-EUSO mock-up model

Optical system:1.5m model (Japan- USA)

2624.488901127606 mm

Optical system protoype

Tested performances meet already the requirements (or are close to it) large diameter Fresnel lenses manufactured in Japan and tested in the US at the University of Alabama (Huntsville) and at MSFC (NASA)

PMT development

- Collaboration with Hamamatsu
- Reduction of size, increase of anode number
- Improvement of Quantum efficiency
- Improvement of uniformity of response
- Each of the 137 PDM boxes houses 36 PMTs, 64 channels each

Miniaturization of dynodes

SPECTRAL RESPONSE CHARACTERISTICS Metal Package PMT (TO-8 Type)

UV Filter

JEM-EUSO DAQ – Electronic System scheme

- Collaboration with ICRR, Institute of Cosmic rays, Tokyo University, Kashiwa campus → Installation march 2013
- <u>Main purpose: calibration:</u>
- a) Cross calibration with TA FD through Noise comparison.
- b) Measurement of background in various conditions
- c) When lidar or electron beam shots, store the data to have an absolute calibration.
- d) Observe few showers in coincidence with TA.

Objectives of the EUSO system at TA site

Engineering test of the detector using one PDM and two lens system.

Field calibration with TA FD

- a) With Laser (CLF)
- b) With electron beam (ELS)
- c) With the observation of several (10s/yr) in coincidence with TA.

Balloon/TA EUSO DAQ – Electronic System scheme

JEM-EUSO DAQ – Electronic System scheme

Location : Black Rock Mesa

IUVT is able to observe CLF and ELS. Time: March. $2012 \sim \rightarrow$ The second half of 2012

Synchronize between TA and IUVT: GPS time

(If possible, we want to use Trg. Signal from TA elec.) IUVT should have a mechanism to change its elevation.

B3. EUSO Balloon

EUSO Balloon campaign

- -Look down from the balloon with an UV telescope (PDM + 3 lens system)
- -Engineering test
- -UV-Background measurement
- –Airshower observations from 40 km altitude
- 2011/6 Approved by CNES
- 2014, March , first of three annual launches

Thermal Model

46°09'15.66" N 6°14'44.85" O Höhe 666 m

Sichthöhe 77.04 km

Payload architecture - driven by optical design

Objective : as representative as possible for JEM-EUSO the present design (Y. Takizawa, 6.2011) is charactized by a short focal lenght, 1.47 m and a fairly large FOV of 8° (see talk Bertaina-Gorodetzky)

=> rough dimension of telescope : 1 x 1 x 1.8 m

B4. MICRO-UVT

MA-PMT64

աշ<u>۲</u>.9ք

25cm

Prototype for ISS 1/3 PDM 22 cm lenses Raise TRL (technical readiness level) Observation of UV Earth (2.5mus – ms scale)

Montecarlo simulation (Geant4) of Micro UVT response. In green the instantaneous field-of view, in red the area covered in a swath of a few minutes. There are 768 pixels divided in 12 phototubes (1/3 of a PDM). PMTs are places orthogonal to the scanning (velocity) vector. Data are acquired every i 2.5 microseconds and can be processed on board or on ground. The image shown has a smoothing algorithm applied.

RAM (Velocity vector) of ISS

Micro UVT yearly plan

2012 Laboratory prototype Ground test 2013 Flight Model construction Calibration 2014 Qualification tests Launch Operations in WORF and outside

2015 Cont. Operations Data analysis Retrieval of data

Conclusions

 JEM-EUSO is a novel mission concept to study Ultra-High-Energy Cosmic rays as well as Atmospheric and Earth Science

 A number of side projects and experiments using this technology are being developed and installed

Measurements beginning in a few months.