

Observations \& Predictions

Diana Valencia MIT

Outline
I. Overview of Observations
2. Internal Structure
3. Interior Dynamics

EXOPLANET OVERVIEW

> 750 Exoplanets and more than 2000 planet candidates!

METHODS FOR DETECTION

- Pulsar timing
- Radial velocity method
- Transit method
- Microlensing method
- Astrometry
= Direct Imaging
Nearby star with faint companion "sub-star"

Earth would be:

* 50 times closer in
* | 000000 times fainter

Gliese 229 and 229b - Hubble Space Telescope

PULSARTIMING

-Timing of pulsar stars are extremely regular. However, if the star has a planet, it will perturb the motion of the star (and pulse arrival times) in a periodic manner.

- Pulsar stars have undergone a supernova, thus it remains to be shown if the planets survived the explosion, or
 where formed from a secondary disk.

MICROLENSING METHOD

- A star that temporarily aligns with a background star will act as a lens and cause its light to 'bend' magnifying its luminosity temporarily
- If the foreground star has a planet, there will be an additional magnifying effect
-This magnification has a complicated dependency on the mass, the distance and velocity of the lens
- Pros: Can detect long-period and small planets
- Cons: Often no follow-up, only mass of the planet, and orbital distance can be deduced

Gravitation Microlensing

ASTROMETRY

-The gravitational effect of a planet on the host star will change its position on the sky

- No planets have been detected this way yet

The motion of the sun due to Jupiter as seen from IOpc away

RADIALVELOCITY

- A multi-body system will orbit around the center of mass. A star with a planet will have a periodic motion (or 'wobble') with respect to an observer
- The more massive and closer the planet is to the star, the stronger the
 signal
- The current detection limit is at $1 \mathrm{~m} / \mathrm{s}$
- Pros: Repeatable, no need to go to space, yields no false positives
- Cons: Measures minimum mass

$$
K_{1}=\left(\frac{2 \pi G}{P}\right)^{\frac{1}{3}} \frac{m_{2} \sin i}{m_{1}^{2 / 3}} \frac{1}{\sqrt{1-e^{2}}}
$$

RADIAL VELOCITY

Jupiter @ 0.1 AU: $30 \mathrm{~m} / \mathrm{s}$
Jupiter@ | AU: $\quad 13 \mathrm{~m} / \mathrm{s}$
Neptune @ 0.I AU: $5 \mathrm{~m} / \mathrm{s}$
Neptune @ | AU: $1.5 \mathrm{~m} / \mathrm{s}$
Super-Earth (5 ME) @ $0.1 \mathrm{AU}: \quad 1.4 \mathrm{~m} / \mathrm{s}$
Super-Earth (5 ME) @ I AU : $45 \mathrm{~cm} / \mathrm{s}$
Earth: $10 \mathrm{~cm} / \mathrm{s}$

TRANSIT METHOD

- A transiting planet will periodically block part of the luminosity of the host star. This drop in luminosity is proportional to the ratio of planet to star radii.
- Larger, short-period planets will produce a bigger effect
- Pros: Repeatable, yields actual size and configuration of the system ($\sin \mathrm{i}$), can yield also mass if there are TTVs caused by other planets
- Cons: has several false positives, need to go to space to detect small planets, information on the radius of the star is critical

TRANSIT METHOD

HD209458b: exojupiter

with HST

Kepler 20e \& f: sub-earth sized

DIRECT DETECTION

- The challenges posed by this method is that planets are too dim and difficult to spatially resolve from the host star - The best candidates are bright (young) planets that are far away from the star
- New observational techniques have yielded ~a few planetary systems

TRANSIT METHOD OPPORTUNITY

Secondary Transit:
starlight is partly
reflected and partly
thermally re-emitted

Primary Transit:
starlight passes through the planet's atmosphere (transmission spectrum)

PHASE CURVES

HD 189733 b

PROBING EXOPLANET ATMOSPHERES

GJ I2 I4b: a 2.7 Rearth planet @ 0.0| AU

Bean et al. 20 II, Croll et al. 201I, Dessert et al. 201।, Crossfield et al. 20 II, Mooij et al. 20 II, Berta et al 20 II

A promising future with ELTs and proposed space missions (Echo, Finesse)

MORE EXOTIC OBSERVATIONS

- Exo-moons (Kipping, 2009)
- Specular reflection from an ocean (Williams and Gaidos, 2008)
- Regional spectroscopy (Palle et al. 2008)
-

SMALL PLANETS ARE ABUNDANT

- Planet formation models have predicted a larger number of low-mass planets relative to more massive ones

Mordasini et al. 2009, also models by Ida \& Lin

SMALL PLANETS ARE ABUNDANT

Observations are consistent with low-mass, small-sized planets being more numerous

SMALL PLANETS ARE ABUNDANT

Transit Method

Borucki et al. 2010

RV Method

Observations are consistent
with low-mass, small-sized
planets being more numerous

EXOPLANETS IN 2004

- Only ExoJupiters and Neptunes-like planets
- Mass and Radius of a handful of planets
- Hot Jupiters \& Inflated planets
- First few atmospheric compound detections (e.g. Na in HD209458b)

EXOPLANETSTODAY THE SUPER-EARTH ERA

- Are these planets scaled up versions of Earth, or down-sized versions of Neptune?
- or something else altogether?

EXOPLANETSTODAY THE SUPER-EARTH ERA

- Are these planets scaled up versions of Earth, or down-sized versions of Neptune?
- or something else altogether?

THEORY OF LOW-MASS PLANETS

Atmosphere/Envelope: acquisition (timing, disk properties) evaporation

THEORY OF SOLID PLANETS

Orbit Mass Radius

Differentiation
Mantle stripping/erosio Water Delivery

Thermal Evolution Atmospheric Composition Habitability

Coarse Spectrum

kelogg et al. 1999

TRANSITING SUPER-EARTHS

INTERNAL STRUCTURE MODEL

$$
\begin{aligned}
& \partial_{\mathrm{r}} \rho=-\rho^{2} \mathrm{~g} / \mathrm{Ks} \\
& \partial_{\mathrm{r}} \mathrm{~g}=4 \pi \mathrm{G} \rho-2 \mathrm{Gm} / \mathrm{r}^{3} \\
& \partial_{\mathrm{r}} \mathrm{~m}=4 \pi \mathrm{r}^{2} \rho \\
& \partial_{\mathrm{r}} \mathrm{P}=-\rho \mathrm{g}
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{\mathrm{r}} \mathrm{~T}=\partial_{\mathrm{r}} \mathrm{P} T / \mathrm{P} \quad \nabla_{\mathrm{T}} \\
& \partial_{\mathrm{r}} \mathrm{~L}=4 \pi \mathrm{r}^{2} \rho(\dot{\varepsilon}-\mathrm{T} \dot{\mathrm{~S}})
\end{aligned}
$$

INTERNAL STRUCTURE MODEL

$$
\begin{aligned}
& \partial_{\mathrm{r}} \rho=-\rho^{2} \mathrm{~g} / \mathrm{Ks} \\
& \partial_{\mathrm{r}} \mathrm{~g}=4 \pi \mathrm{G} \rho-2 \mathrm{Gm} / \mathrm{r}^{3} \\
& \partial_{\mathrm{r}} \mathrm{~m}=4 \pi \mathrm{r}^{2} \rho \\
& \partial_{\mathrm{r}} \mathrm{P}=-\rho \mathrm{g}
\end{aligned}
$$

H / He

$\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$

$(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O}+\mathrm{SiO}_{2}$

$$
\begin{aligned}
& \partial_{\mathrm{r}} \mathrm{~T}=\partial_{\mathrm{r}} \mathrm{P} T / \mathrm{P} \quad \nabla_{\mathrm{T}} \\
& \partial_{\mathrm{r}} \mathrm{~L}=4 \pi \mathrm{r}^{2} \rho(\dot{\varepsilon}-\mathrm{T} \dot{\mathrm{~S}})
\end{aligned}
$$

INTERNAL STRUCTURE MODEL

$$
\begin{aligned}
& \partial_{\mathrm{r}} \rho=-\rho^{2} \mathrm{~g} / \mathrm{Ks} \\
& \partial_{\mathrm{r}} \mathrm{~g}=4 \pi \mathrm{G} \rho-2 \mathrm{Gm} / \mathrm{r}^{3} \\
& \partial_{\mathrm{r}} \mathrm{~m}=4 \pi \mathrm{r}^{2} \rho \\
& \partial_{\mathrm{r}} \mathrm{P}=-\rho \mathrm{g}
\end{aligned}
$$

H / He

$\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$

$(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O}+\mathrm{SiO}_{2}$

$$
\begin{aligned}
& \partial_{\mathrm{r}} \mathrm{~T}=\partial_{\mathrm{r}} \mathrm{P} T / \mathrm{P} \quad \nabla_{\mathrm{T}}\left\{\begin{array}{l}
\text { cond } \\
\text { conv } \\
\text { rad }
\end{array}\right. \\
& \partial_{\mathrm{r}} \mathrm{~L}=4 \pi \mathrm{r}^{2} \rho(\dot{\varepsilon}-\mathrm{T} \dot{\mathrm{~S}})
\end{aligned}
$$

- Need an EOS

INTERNAL STRUCTURE MODEL

$$
\begin{aligned}
& \partial_{\mathrm{r}} \rho=-\rho^{2} \mathrm{~g} / \mathrm{Ks} \\
& \partial_{\mathrm{r}} \mathrm{~g}=4 \pi \mathrm{G} \rho-2 \mathrm{Gm} / \mathrm{r}^{3} \\
& \partial_{\mathrm{r}} \mathrm{~m}=4 \pi \mathrm{r}^{2} \rho \\
& \partial_{\mathrm{r}} \mathrm{P}=-\rho \mathrm{g}
\end{aligned}
$$

H / He

$\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$

$(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O}+\mathrm{SiO}_{2}$

$$
\begin{aligned}
& \partial_{\mathrm{r}} \mathrm{~T}=\partial_{\mathrm{r}} \mathrm{P} T / \mathrm{P} \quad \nabla_{\mathrm{T}} \\
& \partial_{\mathrm{r}} \mathrm{~L}=4 \pi \mathrm{r}^{2} \rho(\dot{\varepsilon}-\mathrm{T} \dot{\mathrm{~S}})
\end{aligned}
$$

- Need an EOS
$-R=R(M, \chi)$

INTERNAL STRUCTURE MODEL

$$
\begin{aligned}
& \partial_{\mathrm{r}} \rho=-\rho^{2} \mathrm{~g} / \mathrm{Ks} \\
& \partial_{\mathrm{r}} \mathrm{~g}=4 \pi \mathrm{G} \rho-2 \mathrm{Gm} / \mathrm{r}^{3} \\
& \partial_{\mathrm{r}} \mathrm{~m}=4 \pi \mathrm{r}^{2} \rho \\
& \partial_{\mathrm{r}} \mathrm{P}=-\rho \mathrm{g}
\end{aligned}
$$

H / He

$\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$

$(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O}+\mathrm{SiO}_{2}$

$$
\begin{aligned}
& \partial_{\mathrm{r}} \mathrm{~T}=\partial_{\mathrm{r}} \mathrm{P} T / \mathrm{P} \quad \nabla_{\mathrm{T}}\left\{\begin{array}{l}
\text { cond } \\
\partial_{\mathrm{r}} \mathrm{~L}=4 \pi \mathrm{r}^{2} \rho(\dot{\varepsilon}-\mathrm{T} \dot{\mathrm{~S}})
\end{array} \quad \begin{array}{l}
\text { rad }
\end{array}\right.
\end{aligned}
$$

- Need an EOS
-Temperature has little effect on the density of rocks, but not the case for gaseous constituents

A FEW WORDS ABOUT EOS

Geophysics approach:

- Birch Murnaghan EOS
- Vinet EOS

Astrophysical approach:

- Sesame
- Aneos

At high enough pressures the EOS should appropriately describe the

Hama \& Suito 1996

- squares:Vinet behaviour of matter (the Fermi limit)

INTERNAL STRUCTURE MODEL

$$
\begin{gathered}
\partial_{r} \rho=-\rho^{2} g / \mathrm{Ks} \\
\partial_{r} \mathrm{~g}=4 \pi \mathrm{G} \rho-2 \mathrm{Gm} / \mathrm{r}^{3} \\
\partial_{\mathrm{r}} \mathrm{~m}=4 \pi \mathrm{r}^{2} \rho \\
\partial_{\mathrm{r}} \mathrm{P}=-\rho \mathrm{g} \\
\partial_{\mathrm{r}} \mathrm{~T}=\partial_{\mathrm{r}} \mathrm{P} \mathrm{~T} / \mathrm{P} \quad \nabla \mathrm{~T} \\
\partial_{\mathrm{r}} \mathrm{~L}=4 \pi \mathrm{r}^{2} \rho(\dot{\varepsilon}-\mathrm{T} \dot{\mathrm{~S}})
\end{gathered} \begin{aligned}
& \text { cond } \\
& \text { conv } \\
& \text { rad }
\end{aligned}
$$

See also:
Sotin et al, 2007, Grasset et al. 2009, Seager et al. 2007, Swift et al. 200 I, Wagner et al. 201 I

INTERNAL STRUCTURE

Valencia et al. 2009

$$
R \sim M^{I / 4}
$$

Pressure scales ~linearly with mass

VARIETY IN ROCKY COMPOSITIONS

Refractory material: Fe, Mg, Si, O, Al, Ti, Ca
Different compositional outcomes (Fe/Si, Mg/Si, ...)

Pure Fe

Mercury-like
(63\% Fe core
$+27 \%$ silicate mantle)
0

Earth-like
(63\% Fe core+ 27% silicate mantle w/ 10\% Fe by mol)

No iron
($\mathrm{MgO}+\mathrm{SiO}_{3}$ planet)
0.5

ROCKY COMPOSITIONS

CoRoT-7b \& Kepler-10 b are enriched in iron by a factor of ~ 6 with respect to Earth

HIGH-DENSITY SUPER-EARTHS

I. Primordial composition
2. Collisional stripping
3. Mantle Erosion

HIGH-DENSITY SUPER-EARTHS

I. Primordial composition
2. Collisional stripping
3. Mantle Erosion

HIGH-DENSITY SUPER-EARTHS

I. Primordial composition
2. Collisional stripping
3. Mantle Erosion

OTHER SOLID COMPOSITIONS

If $\mathrm{C} / \mathrm{O}>0.8$: C will bind to Si to form carbides
The $\mathrm{Mg} / \mathrm{Si}$ ratio has an implication on the proportion of pyroxene to olivine formed

OTHER SOLID COMPOSITIONS

Bond et al, 2010
If $\mathrm{C} / \mathrm{O}>0.8$: C will bind to Si to form carbides
The Mg/Si ratio has an implication on the proportion of pyroxene to olivine formed

WARNING: the measurement of C and O in stars is challenging due to the few spectral lines, at this point a high C/O ratio is controversial

WARM MINI-NEPTUNES

WARM MINI-NEPTUNES

Envelope composition: $100 \% \mathrm{H}_{2} \mathrm{O}+$ ices

$500 \mathrm{~K}<T_{e q}<700 \mathrm{~K}$
$700 \mathrm{~K}<\frac{T_{e q}}{}<900 \mathrm{~K}$
$900 \mathrm{~K}<T_{e q}<1100 \mathrm{~K}$
$1100 \mathrm{~K}<T_{e q}<1300 \mathrm{~K}$
$1300 \mathrm{~K}<T_{e q}<1500 \mathrm{~K}$
$1500 \mathrm{~K}<\mathrm{T}_{e q}<1700 \mathrm{~K}$
$1700 \mathrm{~K}<T_{e q}<2200 \mathrm{~K}$

WARM MINI-NEPTUNES

Envelope composition: $100 \% \mathrm{H}_{2} \mathrm{O}+$ ices

$500 \mathrm{~K}<T_{e q}<700 \mathrm{~K}$
$700 \mathrm{~K}<\frac{T_{e q}}{}<900 \mathrm{~K}$
$900 \mathrm{~K}<T_{e q}<1100 \mathrm{~K}$
$1100 \mathrm{~K}<T_{e q}<1300 \mathrm{~K}$
$1300 \mathrm{~K}<T_{e q}<1500 \mathrm{~K}$
$1500 \mathrm{~K}<\mathrm{T}_{e q}<1700 \mathrm{~K}$
$1700 \mathrm{~K}<T_{e q}<2200 \mathrm{~K}$

- GJ 1214 b must have $\mathrm{H}-\mathrm{He}$

WARM MINI-NEPTUNES

Envelope composition: $100 \% \mathrm{H}_{2} \mathrm{O}+$ ices

$500 \mathrm{~K}<\mathrm{T}_{\text {eq }}<700 \mathrm{~K}$
$700 \mathrm{~K}<\mathrm{T}_{\text {eq }}<900 \mathrm{~K}$
$900 \mathrm{~K}<\mathrm{T}_{\text {eq }}<1100 \mathrm{~K}$
$1100 \mathrm{~K}<\mathrm{T}_{\text {eq }}<1300 \mathrm{~K}$
$1300 \mathrm{~K}<\mathrm{T}_{\text {eq }}<1500 \mathrm{~K}$
$1500 \mathrm{~K}<\mathrm{T}_{\text {eq }}<1700 \mathrm{~K}$
$1700 \mathrm{~K}<\mathrm{T}_{\text {eq }}<2200 \mathrm{~K}$

- GJ 1214 b must have $\mathrm{H}-\mathrm{He}$

STRUCTURE OF A WATER GJI2।4B

NATURE OF ENVELOPES

Valencia \& Guillot, in prep

NATURE OF ENVELOPES

-The content of H-He largely sets the radius of warm mini-Neptunes

- All low-mass planets (<IOME) detected so far have less than $10 \% \mathrm{H}-$ He, except for Kepler-I I e which has 10-25\% H-He

FORMATION \& COMPOSITION

FORMATION \& COMPOSITION

 Kepler II system:b

$$
4 \mathrm{ME}_{\mathrm{E}} \begin{gathered}
13 \mathrm{M}_{\mathrm{E}} \\
<10 \% \mathrm{H}-\mathrm{He}
\end{gathered}
$$

d

6ME
$<10 \% \mathrm{H}-\mathrm{He}$

8ME
10-25\% H-He
f
$2 \mathrm{ME}_{\mathrm{E}}$
< $10 \% \mathrm{H}-\mathrm{He}$

FORMATION \& COMPOSITION

Kepler II system:
b

$$
4 M_{\mathrm{E}} \begin{gathered}
13 \mathrm{M}_{\mathrm{E}} \\
<10 \% \mathrm{H}-\mathrm{He}
\end{gathered}
$$

6ME
$<10 \% \mathrm{H}-\mathrm{He}$

8ME
10-25\% H-He
f

2ME
$<10 \% \mathrm{H}-\mathrm{He}$

How do you make this system?

FORMATION \& COMPOSITION

Kepler II system:

$$
4 M_{E} \quad \mid 3 M_{E}
$$

$$
6 M_{E}
$$

$$
<10 \% \mathrm{H}-\mathrm{He}
$$

f

8ME
$2 \mathrm{ME}_{\mathrm{E}}$
$<10 \% \mathrm{H}-\mathrm{He}$

How do you make this system?

SUMMARY

The data for exoplanets mostly constitutes mass, radius, orbital parameters, and coarse spectra

Smaller planets are abundant
Within a small mass range $\left(2-I 0 M_{E}\right)$ there is a variety of properties in planets

INTERIOR DYNAMICS

INTERIOR DYNAMICS

- A planet evolves habitable conditions
- Composition of atmosphere gets set by degassing and loss mechanisms
- Mantle dynamics affects the existence of a magnetic field

QUALITATIVE TERRESTRIAL EVOLUTION

Time

QUALITATIVE TERRESTRIAL EVOLUTION

Time

EPISODIC EVOLUTION

Potential Temperature

MAGMA OCEANS

Solomatov 2000

MAGMA OCEANS

-The brightest epoch of the lifetime of a terrestrial planet

- Perhaps amenable to direct detection
-There is a trade-off between
brightness and lifetime. There might be a sweet-spot for observations

Valencia \& Pierrehumbert, in prep

MAGMA OCEANS

-The brightest epoch of the lifetime of a terrestrial planet

- Perhaps amenable to direct detection
-There is a trade-off between brightness and lifetime. There might be a sweet-spot for observations

Miller-Ricci et al 2009

PLATE TECTONICS

Mode of convection is expected to have an influence on the degassing history of the planet

PT has enabled the C-Si cycle to operate (which acts as a thermostat) on Earth over geological timescales

PLATE TECTONICS

Mode of convection is expected to have an influence on the degassing history of the planet

PT has enabled the C-Si cycle to operate (which acts as a thermostat) on Earth over geological timescales

Is it the only mechanism to regulate climate? How about episodic foundering like that in lo?

PLATETECTONICS \& MINERALS

Does the origin of life require some minimal degree of mineral evolution? -- Robert Hazen

To go from 12 minerals to more than 4300 at the Earths surface: Water, Plate Tectonics, Oxidation

Pre-solar grains

Diversity of minerals

INTERIOR DYNAMICS: MODELING

Navier-Stokes eqns

$$
\begin{gathered}
\nabla \cdot(\rho \mathbf{u})=0 \\
\rho \mathrm{D}_{\mathrm{t}} \mathbf{u}=\nabla \mathrm{\nabla}+\boldsymbol{\nabla} \cdot(\eta \boldsymbol{\nabla} \mathbf{u})+\rho \mathrm{g} \hat{r} \\
\rho C_{p} \mathrm{D}_{\mathrm{t}} \mathrm{~T}-\alpha \mathrm{T} \mathrm{D}_{\mathrm{t}} \mathrm{P}=\boldsymbol{\nabla} \mathbf{u}: \boldsymbol{\sigma}+\nabla \cdot(\mathrm{k} \boldsymbol{\nabla} \mathrm{~T})+\rho \mathrm{H}
\end{gathered}
$$

INTERIOR DYNAMICS: MODELING

Navier-Stokes eqns

$$
\begin{gathered}
\nabla \cdot(\rho \mathbf{u})=0 \\
\rho \mathrm{D}_{\mathrm{t}} \mathbf{u}=\nabla \mathrm{\nabla}+\boldsymbol{\nabla} \cdot(\eta \boldsymbol{\nabla} \mathbf{u})+\rho g \hat{r} \\
\rho \mathrm{C}_{\mathrm{p}} \mathrm{D}_{\mathrm{t}} \mathrm{~T}-\alpha \mathrm{T} \mathrm{D}_{\mathrm{t}} \mathrm{P}=\nabla \mathbf{u}: \boldsymbol{\sigma}+\nabla \cdot(\mathrm{k} \boldsymbol{\nabla} \mathrm{~T})+\rho \mathrm{H}
\end{gathered}
$$

- Computational Approach

$$
\begin{gathered}
\nabla \cdot(\rho \mathbf{u})=0 \\
\nabla \cdot \boldsymbol{\sigma}-\nabla p=\operatorname{Ra} \hat{r} \rho / \Delta \rho \\
\rho C_{p} D_{t} T=-\operatorname{Di}\left(\alpha \rho T v_{r}+\operatorname{Ra}^{-1} \boldsymbol{\sigma}: \dot{\varepsilon}\right)+\nabla \cdot(k \nabla T)+\rho H
\end{gathered}
$$

INTERIOR DYNAMICS: MODELING

Navier-Stokes eqns

$$
\begin{gathered}
\nabla \cdot(\rho \mathbf{u})=0 \\
\rho \mathrm{D}_{\mathrm{t}} \mathbf{u}=\nabla \mathrm{\nabla}+\boldsymbol{\nabla} \cdot(\eta \boldsymbol{\nabla} \mathbf{u})+\rho g \hat{r} \\
\rho \mathrm{C}_{\mathrm{p}} \mathrm{D}_{\mathrm{t}} \mathrm{~T}-\alpha \mathrm{T} \mathrm{D}_{\mathrm{t}} \mathrm{P}=\nabla \mathbf{u}: \boldsymbol{\sigma}+\nabla \cdot(\mathrm{k} \boldsymbol{\nabla} \mathrm{~T})+\rho \mathrm{H}
\end{gathered}
$$

- Computational Approach

$$
\begin{gathered}
\nabla \cdot(\rho \mathbf{u})=0 \\
\nabla \cdot \boldsymbol{\sigma}-\nabla p=\operatorname{Ra} \hat{r} \rho / \Delta \rho \\
\rho C_{p} D_{t} T=-\operatorname{Di}\left(\alpha \rho T v_{r}+\operatorname{Ra}^{-1} \boldsymbol{\sigma}: \dot{\varepsilon}\right)+\nabla \cdot(k \nabla T)+\rho H
\end{gathered}
$$

- Parameterized Convection

INTERIOR DYNAMICS: MODELING

- Parameterized Convection

see Turcotte \& Schubert (book)
Hager \& O'Connell (1982)

Boundary conditions

- System heated from within
- System heated from below

$$
\mathrm{Ra}=\rho \mathrm{g} \boldsymbol{\alpha} \mathrm{D}^{4} \mathrm{q} /(\mathrm{k} \eta \mathrm{k})
$$

$\mathrm{D} / 2 \delta \sim\left(\mathrm{Ra} / \mathrm{Ra}_{\mathrm{c}}\right)^{1 / 4}$
$\Delta T_{x y} \sim K(L / D) \eta / D^{2}\left(R a / R a_{c}\right)^{2 / 3}$

Valencia et al '07:

- more likely to have PT, based on thinner planets and larger convective stresses
- pressure-temperature structure of plates are very similar (T increases only slightly)

Valencia et al., 2007

PLATES NEEDTO FAIL

Bercovicci, 2003

COULOMB FAILURE

$$
\begin{array}{rr}
\mathrm{T} / \sigma_{y}>1 & \text { subduction, PT } \\
\mathrm{T} / \sigma_{y}<1 & \text { stagnant lid }
\end{array}
$$

COULOMB FAILURE

Coulomb failure criterion for plate deformation:

$$
\sigma_{y}=S_{0}+\mu\left(\sigma-\lambda \sigma_{z z}\right) \sim \mu_{\text {eff }} \mathrm{pg} \delta
$$

T/ $\sigma_{y}>1$ subduction, PT
$\mathrm{T} / \sigma_{\mathrm{y}}<1 \quad$ stagnant lid

COULOMB FAILURE

Coulomb failure criterion for

 plate deformation:$$
\sigma_{y}=S_{0}+\mu\left(\sigma-\lambda \sigma_{z z}\right) \sim \mu_{\text {eff }} \mathrm{pg} \delta
$$

see Foley et al 2012 for a
treatment based on damage

T/ $\sigma_{y}>1$ subduction, PT
$\mathrm{T} / \sigma_{y}<1 \quad$ stagnant lid

COULOMB FAILURE

Coulomb failure criterion for

 plate deformation:$$
\sigma_{y}=S_{0}+\mu\left(\sigma-\lambda \sigma_{z z}\right) \sim \mu_{\text {eff }} \rho g \delta
$$

see Foley et al 2012 for a
treatment based on damage

T/ $\sigma_{y}>1$ subduction, PT
$\mathrm{T} / \sigma_{y}<1 \quad$ stagnant lid

Stress comes from convection:

$$
\Delta \mathrm{T}_{\mathrm{xy}} / \sigma_{\mathrm{y}}=(\mathrm{L} / \mathrm{D}) \alpha \Delta \mathrm{T} / \mathrm{Ra}_{\mathrm{c}}
$$

PLATETECTONICS

$$
T \sim \Delta \sigma_{x x} \sim(L / \delta) \Delta T_{x y}
$$

$$
\mathrm{T} / \sigma_{\mathrm{y}} \sim(\mathrm{~L} / \delta)
$$

The convective shear stress gets

- Scalings for rocky super-Earths:

$$
R \sim M^{1 / 4}
$$

\mathbf{T} / σ_{y}	basal heating	internal heating
const	$R^{4 / 3}$	R^{2}
ρ	$M^{4 / 9}$	$M^{1 / 4}$
$\boldsymbol{\rho}(\mathbf{M})$	$R^{5 / 3}$	R^{3}
$M^{5 / 9}$	$M^{3 / 4}$	

Valencia \& O'Connell '09:

- faults do become stronger but driving stresses can overcome the plates resistance to deformation

Valencia et al., 2009

O'Neill \& Lenardic '07:

- at most in an episodic regime
- Argue that faults are too strong due to high g

O'Neill \& Lenardic, 2007

Scaling Factor $=1.00$; Active
Scaling Factor $=R / R_{E}$

Scalina Factor $=1.07$: Enisodic

Scaling Factor $=1.10$; Stagnant

Korenaga 2010:

- even though SE might have better conditions, the most important factor is to have a low coefficient of friction, which can be achieved with water

Van Heck \& Tackley 20 I I:

- planets are equally likely to have PT, when the increase in density is taken into account, PT becomes more likely

Stamenkovic et al. 2012:

- the results depend on the activation volume. The viscosity of the lower mantle can be so large that would hinder flow.

VISCOSITY:

$\eta=b \exp (H / R T)$

$H=E+P V(P)$

A simple exercise shows that at constant V , the viscosity at the deep mantle of rocky superEarths can increase by 30 orders of magnitude!

Ammann et al. 2010 suggests that V decays with pressure:
$V=V_{0} \exp (-p /$ decay $)$
Karato, 20 II disagrees

INTERIOR DYNAMICS

Tackley et al, in review

-The system is selfregulating through
viscosity

MAGNETIC FIELDS

- Unclear if they are essential to support life, perhaps needed for complex life
- Conditions for a magnetic field in a terrestrial planet:
-The core has to be at least partly molten (to allow for convection)
-The rate of core cooling, which is controlled by the rate of mantle cooling, has to be large enough

LIQUID OR SOLID CORE?

The melting curve of iron has a steep T-dependence

The answer is epoch-dependent

Morard et al. 2010
Planets with less than a few Earth masses might have a magnetic field (and it may be short lived)

Tachinami et al. 20 II , see also Gaidos et al 20 I I

SUMMARY

SUMMARY

- Solid planets evolve habitable conditions. We need to understand their thermal evolution and interior dynamics

SUMMARY

- Solid planets evolve habitable conditions. We need to understand their thermal evolution and interior dynamics
-Their atmosphere is tied to interior dynamics, expect diversity!

SUMMARY

- Solid planets evolve habitable conditions. We need to understand their thermal evolution and interior dynamics
-Their atmosphere is tied to interior dynamics, expect diversity!
- Plate Tectonics on SE is under debate: the role of water, surface temperature, depth dependent rheology, etc ...

SUMMARY

- Solid planets evolve habitable conditions. We need to understand their thermal evolution and interior dynamics
-Their atmosphere is tied to interior dynamics, expect diversity!
- Plate Tectonics on SE is under debate: the role of water, surface temperature, depth dependent rheology, etc ...
- Magnetic fields do not seem very likely to exist for long times in terrestrial super-Earths

SOLID (EXO)PLANETS QUESTIONS

- How does mantle convection happen in a tidally locked solid body?
- How does tides affect the mantle dynamics of solid planets?
- How does the atmosphere/mantle system evolve?
- What are the possible observables?
-What is the pathway(s) to habitability?

References

- Beaulieu, J.-P. et al., 2006: Nature, 439, p437
- Bean, J. L. et al., 2011: ApJ, 743, 9
- Bercovicci, D., 2003: E\&PSL, 205, 107
- Berta, Z. K. et al., 2011: ApJ, 736, 12
- Bond, J. C. et al., 2010: ApJ, 715, 1050
- Borucki, et al. 2010: ArXiv, 1006.2799
- Charbonneau, D. et al., 2000: ApJ, 529, L45
- Croll, B., et al. 2011: ApJ, 736, 78
- Crossfield, I. J. M. et al., 2011: ApJ, 736, 132
- de Mooij, E. J. W. et al., 2012: A\&A, 538, 46
- Désert, J. -M. et al., 2011: ApJ, 743, 92
- Foley, J. F. et al., 2012: E\&PSL, 331, 281
- Fressin, F. et al., 2011: ApJS, 197, 5
- Grasset, O. et al., 2009: ApJ, 693, 722

References

- Hama, J., and Suito, K., 1996: J. Phys. Condens. Matter, 8, 67
- Hatzes, A. P. et al., 2011: ApJ, 743, p75
- Howard, A. W. et al., 2010: Science, 330, 653
- http://exoplanets.org/
- Ikoma, M. and Hori, Y., 2012: ApJ, 753, 66
- Janson, M. et al., 2010: ApJ, 710, L35
- Karato, S., 2010: Icarus, 212, 14
- Kasting, J. F., 1996: ApSS, 241, 3
- Kellogg, L. H. et al., 1999: Science, 283, 1881
- Kipping, D. M., 2009: MNRAS, 392, 181
- Kipping, D. M., 2009: MNRAS, 396, 1797
- Knutson, H. A. et al., 2007: Nature, 447, 183
- Korenaga, J., 2010: ApJL, 725, L43
- Lagrange, A.-M. et al., 2010: Proceedings of the conference In the Spirit of Lyot 2010: Direct Detection of Exoplanets and Circumstellar Disks.
October 25-29, 2010,
http://lyot2010.lesia.obspm.fr/sites/lyot2010/IMG/PDF/Lyot2010proc_s
2_talk_LagrangeAM.pdf

References

- Marcus et al., 2010: ApJ, 719, L45
- Marois, C. et al., 2008: Science, 322, 1348
- Mayor, M. and Queloz, D., 1995: Nature, 378, p344
- Miller-Ricci, E. et al., 2009: ApJ, 704, 770
- Mordasini, C. et al., 2009: A\&A, 501, 1161
- O'Neill, C. and Lenardic, A., 2007: GRL, 34, L19204
- Pallé, E. et al. 2008: ApJ, 676, 1319
- Seager, S. et al., 2007: ApJ, 669, 1279
- Sleep, N. H., 2000: JGR, 105, 17563
- Solomatov, V. S., 2000: Origin of the earth and moon, 323
- Sotin, C. et al., 2007: Icarus, 191, 337
- Stamenković, V. et al., 2012: ApJ, 748, 41
- Tachinami, C. et al., 2011: ApJ, 726, 70
- Turcotte, D. L., and Schubert, G., 2002: Geodynamics, Cambridge University Press

References

- Valencia, D. and O'Connell R. J., 2009, 286, 492
- Valencia, D. et al., 2006: Icarus, 181, 545
- Valencia, D. et al., 2007: ApJ, 670, L45
- Valencia, D. et al., 2009: ApSS, 322, 135
- van Heck, H. J. and Tackley, P. J., 2011: E\&PSL, 310, 252
- Van Heck, H. J. and Tackley, P. J., 2011:E\&PSL, 310, 252
- Wagner, F. W. et al., 2011: Icarus, 214, 366
- William, D. M. and Gaidos, E., 2008: Icarus, 195, 927

