High-pressure physics of the Earth and beyond

Global COE DEEP EARTH MINERALOGY EHIME UNIVERSITY JASRI, UNIV.TOKYO, SUNY

High-P,T phase relation of Earth materials (ex. SiO₂) Hugoniot (Hicks+ 2006 PRB)

- Experimental investigations currently almost impossible
 - *Ab initio* theoretical computation method

Ab Initio (first principles) Earth and Planetary Sciences

(i) Structural exploration

--- Shear response

1.Fundamental methodologies of the ab initio electronic structure calculation method

2.Applications to high-pressure mineral physics and Earth & planetary interiors

- Phase relations including melting
- Electronic property
- Transport property

Schrödinger equation

$$\widehat{H}(\mathbf{r}_1,\mathbf{r}_2\cdots)\Psi(\mathbf{r}_1,\mathbf{r}_2\cdots)=E\Psi(\mathbf{r}_1,\mathbf{r}_2\cdots)$$

 \widehat{H} : Hamilton operator (Hamiltonian) Ψ : Wave function (Eigen vector) E: Total energy (Eigen value)

Eigenvalue problem

Quantization

$$\hat{p} = -i\hbar \nabla$$
 (Momentum)
 $\hat{E} = i\hbar \partial / \partial t$ (Energy)

Many-electron system

Interacting electrons

One electron in an effective potential

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \Delta + V_n[n(\mathbf{r})] + V_H[n(\mathbf{r})] + V_{XC}[n(\mathbf{r})] \end{bmatrix} \phi_i(\mathbf{r}) = \varepsilon_i \phi_i(\mathbf{r}),$$

$$n(\mathbf{r}) = \sum_i |\phi_i(\mathbf{r})|^2 \qquad \qquad \text{Kohn-Sham equations (DFT)}_{(Hohenberg \& Kohn, 1964; Kohn \& Sham, 1965)}$$

Density Functional Theory (DFT)

One-electron Hamiltonian

$$n(\mathbf{r}) = \sum_{i} \left| \phi_{i}(\mathbf{r}) \right|^{2}$$

Angular component of a wavefunction in a central force field (Coulomb potential) $\propto 1/r$ = Spherical harmonics $\Phi_{l.m}$

l: angular momentum quantum number (s, p, d, f) *m*: magnetic quantum number

+ spin quantum number (up or down)

XC (exchange-correlation) potential ($V_{\rm XC}$)

Electron (fermion) → Quantum many-body effects

Local density approximation (LDA)

 $V_{\rm XC}$ determined for the homogeneous electron gas, which can be calculated precisely, is applied also to general systems.

Quantum Monte-Carlo

Energy level to energy band

Electronic density of states

T Tsuchiya, 9th ISPS, 25 June 2012 Tsuchiya & Tsuchiya (2011) PNAS

B2-CaO 0.4 TPa

Pseudo-potential approximation

- Valence electrons only contribute chemical bonding.
- Nuclei + Core electrons → Ion potential (with orthogonality of valence and core electrons)

PP is determined nonempirically to reproduce the true wavefunction correctly in the bonding region ($r > r_c$).

Self-Consistent Field (SCF) method

$$\hat{h}_i[n(\mathbf{r})] \phi_i(\mathbf{r}) = \varepsilon_i \phi_i(\mathbf{r})$$

 ϕ_i depends on the Hamiltonian $\hat{h}_i[n(\mathbf{r})]$.

 $\hat{h}_i[n(\mathbf{r})]$ depends on the total charge density $n(\mathbf{r})$.

 $n(\mathbf{r})$ depends on the wave functions ϕ_i .

The equation is solved iteratively.

Valence charge density of some representative bond types

Large scale computation

GRC-SRFC parallel clusters

理研計算科学研究機構@神戸

GEODYNAMICS

http://jp.fujitsu.com

Atomic dynamics and temperature effects $DFT \rightarrow Total energy of many-electrons system (E_{tot})$ + Hellman-Feynman theorem (perturbation theory)

 $\frac{\partial^2 E_{tot}}{\partial \mathbf{r}_i \partial \mathbf{r}_j} \text{ (Force constant)} \rightarrow Ab \text{ initio} \text{ lattice dynamics} \text{ (LD)}$

Molecular Dynamics method

A method to investigate dynamical property of many-atom systems

Time evolution is calculated by numerically integrating the Newton's equation of motion

$$\mathbf{x}_{i}(t + \Delta t) = \mathbf{x}_{i}(t) + \mathbf{v}_{i}(t)\Delta t + \frac{1}{2}\mathbf{a}_{i}(t)\Delta t^{2}$$
$$\mathbf{v}_{i}(t + \Delta t) = \mathbf{v}_{i}(t) + \frac{\mathbf{a}_{i}(t) + \mathbf{a}_{i}(t + \Delta t)}{2}\Delta t \qquad \text{Velocity-Verlet}$$
algorithm

 $\mathbf{a}_i(t) = \mathbf{F}_i(t)/m_i$

Hellman-Feynman theorem

$$\frac{dE}{d\lambda} = \left\langle \psi(\lambda) \left| \frac{d\widehat{H}}{d\lambda} \right| \psi(\lambda) \right\rangle$$

Force acting on an atom can be calculated directly from the SCF charge density.

Macroscopic thermodynamic quantities

Temperature (Energy equipartition principle)

$$T = \frac{1}{3Nk_B} \sum_j m_j v_j^2$$

Pressure (Virial theorem)

$$P = P_{static} + \frac{Nk_BT}{V} - \frac{1}{3V} \sum_{i>j} \mathbf{F}_{ij} \otimes \mathbf{r}_{ij}$$

But not temperature dependence of heat capacity due to the classical Newton's dynamics (Dulong-Petit law)

Lattice Dynamics Method

Equation of motion

$$F^{\alpha}[\mathbf{r}_{n}(l)] = -\frac{\partial E^{harm}}{\partial u_{n}^{\alpha}(l)} = -\sum_{l',ll',\alpha\beta} \Phi_{nn'}^{\alpha\beta}(l,l')u_{n'}^{\beta}(l')$$

Solution $u_n^{\alpha}(l) = u_n^{\alpha}(\mathbf{q}) \exp[i\mathbf{q} \cdot \mathbf{r}(l) - i\omega t]$

T Tsuchiya, 9th ISPS, 25 June 2012

Dynamical matrix
$$\mathbf{D}_{nn'}^{\alpha\beta}(\mathbf{q}) = \frac{1}{\sqrt{m_n m_{n'}}} \sum_l \mathbf{\Phi}_{nn'}^{\alpha\beta}(0,l) \exp[i\mathbf{q} \cdot (\mathbf{r}_0 - \mathbf{r}_l)]$$

$$\omega^2 u_n^{\alpha}(\mathbf{q}) = \sum_{n',\beta} \frac{\mathbf{D}_{nn'}^{\alpha\beta}(\mathbf{q})}{\sqrt{m_n m_{n'}}} u_{n'}^{\beta}(\mathbf{q})$$

Density Functional Perturbation Theory (DFPT) (Baroni+ PRB 1987; RMP 2001)

Phonon dispersion of MgSiO₃ pPv (P=120GPa)

Calculate the dynamical matrix based on the quantum perturbation theory

Phonon (quantized lattice vibration) **dispersion relation**

gold (Au) 300 200 ω (cm⁻¹) 100 Х κ Г Г q-vector Calc $V/V_0 = 1$ 0.93 0.86 0.82 0.79 Expr. $(V/V_0=1)$ Ο (Neutron Scatering)

Tsuchiya (2003) JGR

Silicates and solid solutions

T Tsuchiya, 9th ISPS, 25 June 2012

(Mg,Fe)SiO₃ Metsue & Tsuchiya (2011,2012)

Quasi-Harmonic Approximation (QHA)

Phonon Helmholz free energy

$$F_{ph}(V,T) = \frac{1}{2} \sum_{\mathbf{q},j} h\omega_j(\mathbf{q},V) + k_B T \sum_{\mathbf{q},j} \ln\left[1 - \exp\left\{-\frac{h\omega_j(\mathbf{q},V)}{k_B T}\right\}\right]$$

Total Helmholz free energy

$$F(V,T) = U_{stat}(V) + F_{ph}(V,T) + F_{el}(V,T) + \cdots$$

Pressure
$$P = -\left[\frac{\partial F}{\partial V}\right]_T$$
 Entropy $S = -\left[\frac{\partial F}{\partial T}\right]_V$

Other thermodynamic functions including

$$G(P,T) = F(V,T) + P(V,T)V$$

Crystal thermodynamics (e.g., MgSiO₃ Pv and PPv)

Tsuchiya+ (2005) JGR

Akaogi+ (2008) Phys Chem Miner

Excellent agreement

T Tsuchiya, 9th ISPS, 25 June 2012

How accurate are calculated EoS? e.g., EoS of H₂O

Experimental confirmation in the TPa condition is quite difficult. Laser or magnetic shock technique seems hopeful.

Thermodynamic phase stability

Gibbs free energy

$$G(P,T) = F(V,T) + P(V,T)V$$

High-*P*,*T* phase boundaries can be determined.

Multicomponent (*P-V-T-x*) phase equilibrium

Tsuchiya & Tsuchiya (2008) PNAS

Internally consistent LDA+U for Fe-bearing system

$$E^{LDA+U}[n(\mathbf{r})] = E^{LDA}[n(\mathbf{r})] + E^{Hub}[\{n_m^{I\sigma}\}] - E^{DC}[\{n^{I\sigma}\}]$$

$$E^{Hub}[\{n_{mm'}^{I\sigma}\}] - E^{DC}[\{n^{I\sigma}\}] = \frac{U}{2} \sum_{I,\sigma} \operatorname{Tr}[\mathbf{n}^{I\sigma}(1-\mathbf{n}^{I\sigma})]$$

Spin transition in ferropericlase (Mg,Fe)O

T Tsuchiya, 9th ISPS, 25 June 2012

On-site Coulomb U parameter determined non-empirically based on a linear response formalism

Tsuchiya+ (2006) PRL

Crystal elasticity

 $\begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix}$ $\sigma_{ij} = V$

Strain ε_{ij}

$$\varepsilon_{ij} = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{pmatrix}$$

$$\varepsilon_{ii} = \frac{\partial u_i}{\partial x_j}, \varepsilon_{ij} = \varepsilon_{ji} = \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right)$$

Elastic constant tensor

Linear response between stress and strain (Hooke's law)

$$\sigma_{ij} = \sum_{kl} c_{ijkl} \varepsilon_{kl}$$

 $\varepsilon_{ij} = \sum_{kl} s_{ijkl} \sigma_{kl}$

$$(i, j, k, l = 1 \sim 3)$$

or

Voigt notation (simplified notation)

$$11 \rightarrow 1, 22 \rightarrow 2, 33 \rightarrow 3, 23 = 32 \rightarrow 4, 31 = 13 \rightarrow 5, 12 = 21 \rightarrow 6$$

e.g., $c_{1111} = c_{11}, \quad c_{1122} = c_{12}, \quad c_{2323} = c_{44}$

Acoustic (elastic) wave speed

Equation of motion

$$\rho \frac{\partial^2 u_1}{\partial t^2} = \frac{\partial \sigma_{11}}{\partial x_1} + \frac{\partial \sigma_{12}}{\partial x_1} + \frac{\partial \sigma_{13}}{\partial x_1},$$

$$\rho \frac{\partial^2 u_2}{\partial t^2} = \frac{\partial \sigma_{22}}{\partial x_2} + \frac{\partial \sigma_{23}}{\partial x_2} + \frac{\partial \sigma_{21}}{\partial x_2},$$

$$\rho \frac{\partial^2 u_3}{\partial t^2} = \frac{\partial \sigma_{33}}{\partial x_3} + \frac{\partial \sigma_{31}}{\partial x_3} + \frac{\partial \sigma_{32}}{\partial x_3}$$

Orientational average

 \Rightarrow Polycrystalline wave speed

$$V_P = \sqrt{\frac{B_S + 4/3\mu}{\rho}}$$
 $V_S = \sqrt{\frac{\mu}{\rho}}$ $V_{\Phi} = \sqrt{\frac{B_S}{\rho}}$

Direct comparison with seismological observations

Cristoffel's equation

 $\left|c_{ijkl}\mathbf{n}_{j}\mathbf{n}_{l}-\rho V\delta_{ik}\right|=0$

⇒Single-crystal wave speed

e.g., ice X phase (P=130 GPa)

Shear response of crystals

Generalized Stacking Faults (GSF) Theory (Vitek, 1968; Cordier+ 2004; etc)

1.Fundamental methodologies of the ab initio electronic structure calculation method

2.Applications to high-pressure mineral physics and Earth & planetary interiors

- Phase relations including melting
- Electronic property
- Transport property

T Tsuchiya, 9th ISPS, 25 June 2012 **Example:** Post-perovskite transition in MgSiO₃

Upper mantle: Olivine Mg₂SiO₄

Upper mantle Transition zone Subduction Plume Lower mantle D"=150±100km **Outer core** CMB **Inner** core 364 23.513.5 0 [Pressure (GPa)] 136 6370 2890 660 410 0 [Depth (km)]

Lower mantle: Perovskite MgSiO₃

Perovskite to post-perovskite structural change

Tsuchiya+ (2004) EPSL

Perovskite (Lower mantle)

Shear deformation (ϵ_6)

Post-Perovskite (D" layer)

CaIrO₃-type structure

Orthorhombic cell (*Cmcm*, *Z* = 4) with SiO₆ octahedra.
Those octahedra are connected with each other by sharing edges along the a direction. This is a major reason for the structure more stable than Pv.

> Exper: Murakami+ (2004) Theor: Tsuchiya+ (2004) etc

Effects of Fe and Al incorporation

Table 2. Logarithmic Derivatives of Velocities and Density With Respect to Lateral Variations in the Fe and Al Content at 100 GPa

	$\partial \ln V_{\mathbf{P}} / \partial X$		$\partial \ln V_{\rm S} / \partial X$		$\partial \ln V_{\Phi} / \partial X$		$\partial \ln \rho / \partial X$	
	Fe	Al	Fe	Al	Fe	Al	Fe	Al
pv	-0.140	-0.049	-0.220	-0.083	-0.098	-0.026	0.231	0.017
ppv	-0.156	-0.057	-0.236	-0.131	-0.099	-0.012	0.228	0.021

Tsuchiya & Tsuchiya (2006) GRL

Observations (PREM, Dziewonski & Anderson, 1981)

Calculated velocities and density of some model rocks along adiabatic geotherm (Tsuchiya PEPI 2011; Tsuchiya & Kawai, under review)

V_s is the most insensitive to the composition among these three models. (cf, Murakami+ 2012)

Modeled velocity structure

Kawai & Tsuchiya (2009) PNAS

About CMB heat flux

Extend to planetary interiors

360GPa 6000 K

Rocky (silicate) mantle + iron core

Gassy (H,He + rock+ice core?) ~10M

e.g., Guillot (1999) Science

Now, more than 700 exoplanets have been found. Some of them are terrestrial = **Super-Earths (SE)**.

http://exoplanet.eu/

GJ1214 (~6.55 M_{\oplus} rock+H₂O)

Rivera+ (2005); Udry+ (2007); Charbonneau+ (2009); Barnes+ (2010); etc

High-P,T phase relation of Earth materials (ex. SiO₂) Hugoniot (Hicks+ 2006 PRB)

- High-*P*,*T* phase relations highly unclear at ultrahigh pressures
- But several important advances made by ab initio calculations

Hydrogen

T Tsuchiya, 9th ISPS, 25 June 2012 *Morales+ (2010) PNAS* Ab initio MD

Water

Schwegler+ (2008) PNAS Ab initio melting curve

GEODYNAMICS

INIVERSITY

Ice

Hermann+ (2012) PNAS Ab initio static phase stability

Carbon "Diamonds in the sky" Ross+ (1981) Nature ?

Correa+ (2006) PNAS Ab initio high-P,T phase diagram of C

Knudson+ (2008) Science Experimental confirmation of the Dia-BC8-Liq triple point

Iron

Morard+ (2011) HEDP Ab initio melting curve

No liquid iron core in giant planets

/ERSITY

Stixrude (2012) PRL Ab initio High-P,T phase diagram

High-*P*,*T* **phase relation of SiO**₂

Dense packing structures with AX₂ stoichiometry for initial models (15 in total)

(1) α -PbO₂ (VI)

(2) Pyrite (FeS₂) (VI)

(10) MoSi₂ (X) (6) $P2_1/m$ (VIII) (7) Cotunnite (PbCl₂) (8) $Fe_2P(IX)$ (9) P-1 (IX) (IX)

(14) MgZn₂ (XII)

Blue: Si Red: O

Coordination numbers in parentheses

Static enthalpy differences relative to the pyrite phase

- Pyrite directly transforms to the Fe₂P-type phase (not cotunnite) at ~7 Mbar!
- No other stable structures
- No elemental dissociation of SiO_2 into Si (hcp) plus O_2 (ζ), either

Tsuchiya & Tsuchiya (2011)

Crystal structure of the Fe₂P-type new high-P phase of SiO₂

Tsuchiya & Tsuchiya (2011) PNAS

Hexagonal cell (P62m, Z = 3) with two different kinds of SiO₉ tricapped trigonal prisms
Those polyhedra are fairly regular. This makes the structure more stable than Cot.

s_{12} s_{1} s_{1} s_{1} s_{2} s_{2} s_{2} s_{3} s_{2} s_{3} $s_{$

O2 V_{poly} = 9.295 Å³ ECoN = 8.5

Si2-O1 (×6) = 1.555 Å

-O2 (×3) = 1.707 Å

02

01

02

01

(1) Quartz SiO₄

SiO₄₊₆ (3) Li₂ZrF₆-type GEODYNAMOS RE (metastable) SiO₆

(4) Fe₂P-type (stable >~700 GPa) SiO₉

Tsuchiya & Tsuchiya (2011)

Ultrahigh-*P*,*T* phase relations in SiO₂

Tsuchiya & Tsuchiya (2011) PNAS

Experimental confirmation using a low-P analog, TiO₂

Dekura, Tsuchiya+ (2011) PRL

Experimental confirmation

- Laser shock technique
- Magnetic shock (Z-machine)

USA, France, ...

A new project in Japan at Spring-8

XFELとパワーレーザーによる 新極限物質材料の探索

> K. Tanaka, N. Ozaki, O. Sakata, T. Tsuchiya, T. Sano, T. Sekine, K. Arakawa, ... (>20 people)

Osaka Univ., NIMS, Ehime Univ., Hiroshima Univ., Shimane Univ., ...

X-ray Free Electron Laser (XFEL)

In situ observation in TPa regime

Significant optical absorption of Fe₂P-typ TiO₂

Dekura, Tsuchiya+ (2011) PRL

Electronic density of states

T Tsuchiya, 9th ISPS, 25 June 2012 Tsuchiya & Tsuchiya (2011) PNAS

Ag2p

Mg3s

Si3s

Si3p

Si3d 02s O2p

40

B2-MgO 1.5 TPa

B2-CaO 0.4 TPa

Band gap vs pressure in SiO₂ phases

Metsue & Tsuchiya (2012) Phys Chem Min

 Fe_2P -type SiO₂ has much smaller gap than Pyr but still remains insulating even above 1 TPa.

P2₁-type H₂O ice electronic DoS

GEODYNAMICS RESEARCH (

Hermann+ 2012 PNAS J. Tsuchiya, unpub.

Ice also still remains insulating even at 2 TPa.

Metallization in solids only for compounds with heavy (d) metals

Thermodynamic properties of Fe₂P-type SiO₂

T Tsuchiya, 9th ISPS, 25 June 2012 Modeling of the silica-rich planetary mantle

Density $\frac{d\rho}{dr} = \frac{\rho(r)g(r)}{\phi(r)}$ Gravity $\frac{dg}{dr} = 4\pi G\rho(r) - \frac{2Gm(r)}{r^3}$ Mass $\frac{dm}{dr} = 4\pi r^2 \rho(r)$ Pressure $\frac{dP}{dr} = -\rho(r)g(r)$

$$\phi(\mathbf{r}) = B_S(r) / \rho(r)$$

The ho - r relationship for a super-Earth with 10M $_{\oplus}$ evaluated by **Valencia+ (2006)**

Thermal structure of SE

Adiabatic temperature gradient

$$\left(\frac{dT}{dP}\right)_{S} = \frac{\alpha(P)g(P)T}{C_{P}(P)}$$

Almost no difference by using MgSiO₃ parameters

Phase transition buoyancy parameter

T Tsuchiya, 9th ISPS, 25 June 2012 Christensen and Yuen (1985)

Negatively large P_h

Small or positive P_h

Layered convection

Whole convection

For the Pyr-Cot transition in a super-Earth with $10M_{\oplus}$:

$$\Gamma = -10 \text{ MPa K}^{-1}$$

$$\frac{\Delta \rho}{\rho} = 0.04$$

$$\rho = 8400 \text{ kg m}^{-3}$$

$$\alpha = 0.53 \times 10^{-5} \text{ K}^{-1}$$

$$g = 31 \text{ m s}^{-2}$$

$$h = 4500 \text{ km}$$

$$\Rightarrow P_h \sim -0.064$$

The transition might have not so large effect even with a negative boundary.

T Tsuchiya, 9th ISPS, 25 June 2012

Decomposition of MgSiO₃ post-perovskite

Tsuchiya & Tsuchiya (2011)

 MgSiO₃ (PPv) → MgO (B2) + SiO₂ (Cot or Fe₂P) (Umemoto+ 2006; Tsuchiya & Tsuchiya 2011)

An intermediate state with MgSi₂O₅ + MgO (Umemoto+ 2011)

Disproportionation reaction in NaCoF₃ NaCoFe₃ (PPv) \rightarrow Na₅Co₃F₁₁ + NaCo₃F₇ (Yusa+ 2012)

Further studies with careful structure search maybe needed

But no eccentric changes such as metallization seem likely.

Energy transportation in the Earth

Lattice thermal conductivity

(a) **Phonon** = Quantized lattice vibrations

(b) Phonon-phonon scattering → Thermal resistivity

(c) Anharmonicity \rightarrow Interaction of phonons

Lattice thermal conductivity (Higher order anharmonic lattice dynamics)

T Tsuchiya, 9th ISPS, 25 June 2012

Previous works on κ

Ab initio (non-equilibrium) molecular dynamics (MD), etc

Large simulation cell size

Limited to simple crystal structures like MgO

(de Koker 2009; Tang & Dong 2010; etc)

Our technique

DFPT approach

Small (primitive) unit cell size

High efficiency & low numerical error

Applicable to complex structures like MgSiO₃

κ of MgSiO₃-Pv

Dekura, Tsuchiya, Tsuchiya, PRL, under review

Rayleigh number of mantles

Melting temperature

Ab initio two-phase coexisting MD

(Alfe 2009; Usui & Tsuchiya 2010; etc)

- Equilibrate a supercell with **Sol-Liq interfaces** at several P,T conditions
- A method to avoid the kinetic effects (super-cooling and -heating) across melting and freezing

a) T > T_M Melt stable Usui & Tsuchiya (2010) J Earth Sci

b) $T < T_M$ Solid stable

P = 73 GPa, T = 5,600 K

P = 62 GPa, T = 5,300 K

Melting curve of SiO₂

 T_M quite comparable to the core conditions of some planets

T Tsuchiya, 9th ISPS, 25 June 2012

Electronic DoS of silicate melt

Subsolidus condition (1800 GPa, 10000 K) Fe₂P-type SiO₂ Supersolidus condition (1800 GPa, 12000 K) Liquid SiO₂

Semi-metallic

Metallic

Metallization (band gap closure) across melting (cf. Karki 2007 PRB) Liquid silicate maybe easily mix with H or H_2O . \rightarrow **Core erosion (cf. Wilson+ 2012 PRL)**

Wilson & Militzer (2012) PRL

Oxides soluble to liquid H at $T_{gass giant}$ but not at T_{SE}

Current views

Gas & ice planets

- Molten metallic rocky core
 - Liquid iron core Active interior Core erosion

lacksquare

igodol

Super-Earths

- Solid insulating thermally well conductive rocky mantle
 - Solid iron core Less active interior

EHIME UNIVERSITY

GEODYNAMICS RESEARCH CENTER

EHIME UNIVERSITY

GEODYNAMICS RESEARCH CENTER

Lattice thermal conductivity (Higher order anharmonic lattice dynamics)

$$\kappa = \frac{1}{3} \sum_{s}^{3n} \int \mathbf{v}_{\mathbf{q},s}^2 c_{\mathbf{q},s} \tau_{\mathbf{q},s} d\mathbf{q}$$

$$(\vec{0},s)$$
 (qj)
 $(-qj')$

Anharmonic phonon

Phonon lifetime

$$\tau_{\mathbf{q},s} = \frac{1}{2\Gamma(\omega_{\mathbf{q},s})}$$

Bose-Einstein function

Phonon damping function

$$\Gamma_{\mathbf{q}j}(\omega) = \frac{\pi}{2} \sum_{\mathbf{q}',j',j''} V_3(-\mathbf{q}j,\mathbf{q}'j',\mathbf{q}-\mathbf{q}'j'') \sum [1+n_{\mathbf{q}'j'} + n_{\mathbf{q}-\mathbf{q}'j''}] \delta(\omega_{\mathbf{q}'j'} + \omega_{\mathbf{q}-\mathbf{q}'j''} - \omega) + 2[n_{\mathbf{q}-\mathbf{q}'j''} - n_{\mathbf{q}'j'}] \delta(\omega_{\mathbf{q}'j'} - \omega_{\mathbf{q}-\mathbf{q}'j''} - \omega) + 2[n_{\mathbf{q}-\mathbf{q}'j''} - n_{\mathbf{q}'j'}] \delta(\omega_{\mathbf{q}'j'} - \omega_{\mathbf{q}-\mathbf{q}'j''} - \omega) \}.$$

 $n_{\mathbf{q}j} = \frac{1}{e^{\hbar\omega_{\mathbf{q}j}/k_BT} - 1}$ *V*₃: anharmonic coupling coefficient

T Tsuchiya, 9th ISPS, 25 June 2012

Bohr-Sommerfeld quantization condition

$$l = m_e vr = n\hbar$$

n = 1,2,3, ... \hbar : Plank constant

l is discrete, not constant.

$$\int \int pdq = n\hbar$$
Quantization condition

SCF cycle vs total energy variation

Au fcc structure

B2-CaO electronic DoS

T Tsuchiya, 9th ISPS, 25 June 2012 Tsuchiya & Tsuchiya (2011)

B2-CaO Vibrational DoS

Compression behaviors

Density variation of super-Earth with assuming pyrolitic composition

Periodic boundary condition for a crystal

$$\phi(x+a) = \phi(x)$$

$$Ga = \pm 2n\pi \ (n = 0, 1, 2, 3, \cdots)$$

$$G = 0, \pm \frac{2\pi}{a}, \pm \frac{4\pi}{a}, \cdots, \pm \frac{2n\pi}{a}$$

3-dimensional

$$\mathbf{G}_{\alpha} = \pm \frac{2n\pi}{\Omega} (\mathbf{a}_{\beta} \times \mathbf{a}_{\gamma})$$

Reciprocal lattice vector

第一原理電子状態計算の限界

①バンドギャップ問題: バンドギャップを過小評価

FIG. 3. Comparison of self-consistently calculated LDA and EXX band gaps (in eV) of various semiconductors with experimental data from Refs. 73 and 89–91.

Stadele+ (1999) PRB

②弱い結合:例)LDA結合距離を過小評価(overbind)

		Volume (Å ³)	Error (%)	Bulk Modulus (GPa)	Error (%)	Sublimation Energy (eV)	Error (%)
勾配補正 – (GGA)	LDA	26.43	-18	25.3	+132	0.99	+71
	BP86	30.85	-4	13.5	+24	0.68	+17
	PW91	31.35	-2	13.5	+24	0.55	-4
	PBE	31.82	-1	12.8	+17	0.53	-8
	B-Loc.	39	+22	4	-63	0.24	-42
	Exp.	32.05 ^a		10.9 ^b		0.58 ^c	

TABLE I. Properties of Bernal-Fowler ice.

Hamann+ (1997) PRB

GGAにより大きく改善

③遷移金属酸化物の基底状態(強相関電子状態)

金属電子状態

Cococcioni & de Gironcoli (2005) PRB

実際の絶縁基底状態(E_g ~2eV)が再現されない!

Melting curve of MgSiO₃

Comparable to the SiO₂'s T_M and also Fe's T_M

Study on the ultrahigh-pressure phases of Earth and planetary materials

- Just started and now rapidly progressing
- Unexpected phases are continuously discovered. There would still be many other unrevealed structures.
- Off-Hugoniot laser shock appears quite important to confirm calculations experimentally, maybe a unique technique from the experimental side.

Large scale computation

GRC-SRFC parallel cluster systems

Pyrope

Xeon

Knorringite1,2

World fastest

Observation of exsoplanets

Doppler method

Gravitational interaction between a parent star and a planet

- \mathbf{V}
- Existence of a planet
 - Mass of a planet

Transit method

Eclipse by a planet, i.e., the light of a parent star dimmed by a transiting planet

 \downarrow

- Existence of a planet
 - Size of a planet

Mass + Size \Rightarrow Mean density

Sasselov (2008)

Eutectic melting relation in the MgO-SiO₂ system

Lattice Dynamics method

- Atomic thermal vibration in sold
- ⇒ Collective motion of oscillators (phonon)

Harmonic Approximation $\Delta E=(k/2)\Delta x^2$ Linear Approximation F=-k∆x

Dynamical matrix

$$\sum \Phi_{\kappa\kappa'}^{\alpha\beta}(0l) \exp\{-i\mathbf{q} \cdot (\mathbf{x}_0 - \mathbf{x}_l)\}$$

Phonon dispersion relation

A milestone from K (November/2011): First-principles calculations of electron states of a silicon nanowire

www.riken.jp

100,000 atoms!!!

Calculations with a few hundred atoms now not special

Examples of the transit planet

CoRoT-7b

GJ1214b

Discovery: 2009 $M = \sim 4.8 M_{\oplus}$ $R = \sim 1.7 R_{\oplus}$ $\langle \rho \rangle = \sim 5.6 \text{ g/cm}^3 \sim \langle \rho_{\oplus} \rangle$

Discovery: 2009 $M = \sim 6.55 M_{\oplus}$ $R = \sim 2.7 R_{\oplus}$ $\langle \rho \rangle = \sim 1.9 \text{ g/cm}^3 < \langle \rho_{\oplus} \rangle$

Electronic structure of solids

Thermal structure of SE

Adiabatic temperature gradient

$$\left(\frac{dT}{dP}\right)_{S} = \frac{\alpha(P)g(P)T}{C_{P}(P)}$$

References(1)

•Akaogi, M., Ito, E., 1993: Heat capacity of MgSiO₃ perovskite, GRL, 20, 105-108.

•Akaogi, M., Kojitani, H., Morita, T., Kawaji, H., Atake, T., 2008: Low-temperature heat capacities, entropies and highpressure phase relations of MgSiO₃ ilmenite and perovskite, Phys. Chem. Mineral, 35, 287-297.

•Alfè,D., 2009: Temperature of the inner-core boundary of the Earth: Melting of iron at high pressure from first-principles coexistence simulations, Phys. Rev. B, 79, 060101.

•Baroni, S., Giannozzi, P., 1987:Pressure-induced structural instability of cesium halides from ab initio pseudopotential techniques, Phys. Rev. B, 35, 765-769.

•Baroni, S., de Gironcoli, S., dal Corso, A., Giannozzi, P., 2001: Phonons and related crystal properties from densityfunctional perturbation theory, Rev. Mod. Phys., 73, 515-562.

•Barnes, R., Raymond, S. N., Greenberg, R., Jackson, B., Kaib, N. A., 2010: CoRoT-7b: Super-Earth or Super-Io?, Astrophys. J. Lett., 709, L95-L98.

• Charbonneau, D., Berta, Z. K., Irwin, J., Burke, C. J., Nutzman, P., Buchhave, L. A., Lovis, C., Bonfils, X., Latham, D. W., Udry, S., Murra Clay, R. A., Holman, M. J., Falco, E., Winn, J. N., Queloz, D., Pepe, F., Mayor, M., Delfosse, X., Forveille, T., 2009: A super-Earth transiting a nearby low-mass star, Nature, 462, 891-894.

• Christensen, U. R., Yuen, D. A., 1985: Layered convection induced by phase transitions, 1985, JGR, 90, 10291-10300.

•Cococcioni, M., de Gironcoli, S., 2005: Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Phys. Rev. B, 71, 035105.

•Cordier, P., Ungár, T., Zsoldos, L., Tichy, G., 2004: Dislocation creep in MgSiO3 perovskite at conditions of the Earth's uppermost lower mantle, Nature, 428, 837-840.

•Correa, A. A., Bonev, S. A., Galli, G., 2006: Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory, PNAS, 103, 1204-1208.

• de Koker, N., 2009: Thermal Conductivity of MgO Periclase from Equilibrium First Prinsiples Molecular Dynamics, Phys. Rev. Lett., 103, 125902.

• Dekura, H., Tsuchiya, T., Kuwayama, Y., Tsuchiya, J., 2011: Theoritical and Experimental Evidence for a New Post-Cotunnite Phase of Titanium Dioxide with Significant Optical Absorption, Phys. Rev. Lett., 107, 045701.

• Dziewonski, A. M., Anderson, D. L., 1981: Preliminary reference Earth model, PEPI, 25, 297-356.

• Fiquet, G., Andrault, D., Dewaele, A., Charpin, T., Kunz, M., Haüsermann, D., 1998: P-V-T equation of state of MgSiO3 perovskite, PEPI, 105, 21-31.

• Guillot, T., 1999: Interior of Giant Planets Inside and Outside the Solar System, Science, 286, 72-77.

•Hamann, D. R., 1997: H₂O hydrogen bonding in density-functional theory, Phys. Rev. B, 55, R10157-R10160.

References(2)

•Hermann, A., Ashcroft, N. W., Hoffmann, R., 2012: High pressure ices, PNAS, 109, 745-750.

• Hicks, D. G., Boehly, T. R., Eggert, J. H., Miller, J. E., Celliers, P. M., Collins, G. W., 2006: Dissociation od Liquid Silica at High Pressure and Temperatures, Phys. Rev. Lett., 97, 025502.

•Hohenberg, P., Kohn, W., 1964: Inhomogeneous Electron Gas, Phys. Rev., 136, 864-871.

•Karki, B. B., Bhattararai, D., Stixrude, L., 2007: First-principles simulations of liquid silica: Structural and dynamical behavior at high pressure, Phys. Rev. B, 76, 104205.

•Kawai, K., Tshuchiya, T., 2009: Temperature profile in the lowermost mantle from seismological and mineral physics joint modeling, PNAS, 106, 22119-22123.

•Knudson, M. D., Desjarlais, M. P., Dolan, D. H., 2008: Shock-Wave Exploration of the High-Pressure Phases of Carbon, Science, 322, 1822-1825.

•Knudson, M. D., Desjarlais, M. P., Lemke, R. W., Mattsson, T. R., French, M., Nettelmann, N., Redmer, R., 2012, Phys. Rev. Lett., 108, 091102.

•Kohn, W., Sham, L. J., 1965: Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140, 1133-1138.

•Kuwayama, Y., Hirose, K., Sata, N., Ohishi, Y., 2005: The Pyrite-Type High-Pressure Form of Silica, Science, 309, 923-925.

• Metsue, A., Tsuchiya, T., 2011: Lattice dynamics and thermodynamic properties of (Mg, Fe²⁺)SiO₃ postperovskite, JGR, 116, B08207.

• Metsue, A., Tsuchiya, T., 2012: Ab initio investigation into the elasticity of ultrahigh-pressure phase of SiO₂, Phys. Chem. Min., 39, 177-187.

•Mitrovica, J. X., Forte, A. M., 2004: A new inference of mantle viscosity based upon joint inversion of comvection and glacial isostatic adjustment data, EPSL, 225, 177-189.

•Morard, G., Bouchet, J., Valencia, D., Mazevet, S., Guyot, F., 2011: The melting curve of iron at extreme pressures: Implications for planetary cores, HEDP, 7, 141-144.

• Molales, M. A., Pierleoni, C., Schwegler, E., Ceperley, D. M., 2010: Evidence for a first-order liquid-liquid transition in highpressure hydrogen from ab initio simulations, PNAS, 107, 12799-12803.

• Murakami, M., Hirose, K., Kawamura, K., Sata, N., Ohishi, Y., 2004: Post-Perovskite Phase Transition MgSiO₃, Science, 304, 855-858.

•Murakami, M., Ohishi, Y., Hirao, N., Hirose, K., 2012: A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data, Nature, 485, 90-94.

• Nielsen, O. H., Martin, R. M., 1985: Quantum-mechanical theory of stress and force, Phys. Rev. B, 32, 3780-3791.

<u>References(3)</u>

•Nielsen, O. H., Martin, R. M., 1985: Stresses in semiconductors: Ab initio calculations on Si, Ge, and GaAs, Phys. Rev. B, 32, 3792-3805.

•Nimmo, F., 2007: Treatise on Geophysics, Elsevier B. V., 9, 217-241.

• Rivera, E., Lissauer, J. J., Butler, R. P., Marcy, G. W., Vogt, S. S., Fischer, D. A., Brown, T. M., Laughlin G., Henry, G. W., 2005, Astrophys. J., 634, 625-640.

-Sasselov, D. D., 2008: Astronomy: Extrasolar planets, Nature, 451, 29-31.

• Saxena, S. K., Dubrovinsky, L. S., Tutti, F., le Bihan, T., 1999: Equation of state of MgSiO₃ with the perovskite structure based on experimental mesurement, Amer. Mineral., 84, 226-232.

•Schwegler, E., Sharma, M., Gygi, F., Galli, G., 2008: Melting of ice under pressure, PNAS, 105, 14779-14783.

•Sotin, C., Grasset, O., Mocquet, A., 2007: Mass radius curve for extrasolar Earth-like planets and ocean planets, Icarus, 191, 337-351.

•Städele, M., Moukara, M., majewski, J. A., Vogl, P., Görling, A., 1999: Exact exchange Kohn-Sham formalism applied to semiconductors, Phys. Rev. B, 59, 10031-10043.

•Stamenković, V., Breuer, D., Spohn, T., 2011: Thermal and transport properties of mantle rock at high pressure: Applications to super-Earths, Icarus, 216, 572-596.

•Stixrude, L., 2012: Structure of Iron to 1 Gbar and 40 000 K, Phys. Rev. Lett., 108, 055505.

• Tang, X., Dong, J., 2010: Lattice thermal conductivity of MgO at conditions of Earth's interior, PNAS, 107, 4539-4543.

•Tsuchiya, J., Tsuchiya, T., Wentzcovitch, R. M., 2005: Vibrational and thermodynamic properties of MgSiO₃ postperovskite, JGR, 110, B02204.

• Tsuchiya, J., Tsuchiya, T., 2008: Postperovskite phase equilibria in the MgSiO₃-Al₂O₃ system, PNAS, 105, 19160-19164.

• Tsuchiya, T., 2003: First-principles prediction of the P-V-T equation of stage of gold and the 660-km discontinuity in Earth's mantle, JGR, 108, 2462.

• Tsuchiya, T., 2011: Elasticity of subducted basaltic crust at the lower mantle pressures: Insights on the nature of deep mantle heterogeneity, PEPI, 188, 142-149.

•Tsuchiya, T., Tsuchiya, J., 2006: Effect of impurity on the elasticity of perovskite and postperovskite : Velocity contrast across the postperovskite transition in (Mg, Fe, Al)(Si, Al)O3, GRL, 33, L12SO4.

•Tsuchiya, T., Tsuchiya, J., 2007: High-pressure-high-temperature phase relations of MgSiO3: First-principles calculations, Phys. Rev. B, 76, 092105.

•Tsuchiya, T., Tsuchiya, J., 2011: Prediction of a hexagonal SiO₂ phase affecting stabilities of MgSiO₃ and CaSiO₃ at multimegabar pressure, PNAS, 108, 1252-1255.

References (4)

•Tsuchiya, T., Tsuchiya, J., Umemoto, K., Wentzcovitch, R. M., 2004: Phase transition in MgSiO3 perovskite in the earth's lower mantle, EPSL, 224, 241-248.

•Tsuchiya, T., Wentzcovitch, R. M., da Silva, Cesar R. S., de Gironcoli, S., 2006: Spin Transition in Magnesiowüstite in Earth's Lower Mantle, Phys. Rev. Lett., 96, 198501.

•Udry, S., Bonfils, X., Delfosse, X., Forveille, T., Mayor, M., Perrier, C., Bouchy, F., Lovis, C., Pepe, F., Queloz, D., Bertaux, J. L., 2007: The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8 M[⊕]) in a 3-planet system, A&A, 469, L43-L47.

Umemoto, K., Wetzcovitch, R. M., 2011: Two-stage dissociation in MgSiO3 post-perovskite, EPSL, 311, 225-229.
Umemoto, K., Wetzcovitch, R. M., Allen, P. B., 2006: Dissociation of MgSiO3 in the Cores of Gas Giants and Terrestrial Exoplanets, Science, 311, 983-986.

• Usui, Y., Tsuchiya, T., 2010: Ab initio two-phase molecular dynamics on the melting curve of SiO₂, J. Earth Sci., 21, 801-810.

• Valencia, D., O'Connell, R. J., Sasselov, D., 2006: Internal structure of massive terrestrial planets, Icarus, 181, 545-554.

• Vítek, V., 1968: Intrinsic stacking faults in body-centred cubic crystals, Phil. Mag., 18, 773-786.

•Wentzcovitch, R. M., Tshuchiya, T., Tsuchiya, J., 2006: MgSiO3 postperovskite at D" conditions, PNAS, 103, 543-546.

•Wilson, H. F., Militzer, B., 2012: Rocky Core Solubility in Jupiter and Giant Exoplanets, Phys. Rev. Lett., 108, 111101.

•Yusa, H., Shirako, Y., Akaogi, M., Kojitani, H., Hirao, N., Ohishi, Y., Kikegawa, T., 2012: Perovskite-to-Postperovskite Transitions in NaNiF₃ and NaCoF₃ and Disproportionation of NaCoF₃ Postperovskite under High Pressure and High Temperature, Inorg. Chem., 51, 6559-6566.

GEODYNAMICS RESEARCH CENTER