

Dust Devilの数値的再現と 生成メカニズムの考察

伊藤純至 東京大学·大気海洋研 究所

2012年6月20日 CPSセミナー

1. はじめに

Dust Devil(塵旋風)

- 晴天時の日中、発達した対流混合層で生ずる、小スケールの強い鉛直軸周りの渦
- 地表面からダストを巻き上げ、可視化

2011年度 東京大学大気海洋研究所フォトコンテスト所長賞

ダストデビルの観察2

@Oklahoma

@Arizona

ダストデビルの生成

- 対流混合層では、ダストデビルや"Invisible Dust Devil"(@札幌、Fujiwara et al. 2011)の生成が一般的 にみられる、火星でも
- 数値的研究

 → <u>水平一様、理想的な</u>対流混合層でダストデビル に対応する渦が生成 (e.g. Kanak et al. 2000, Toigo et al. 2003, Gheynani and Taylor 2010, Ohno and Takemi 2010, Raasch and Franke 2011)

本研究の目的

理想的な対流混合層で、ダストデビルの成因を 定量的に調べる

目次

1. はじめに 2. ダストデビルの数値的再現 3. ダストデビルの生成メカニズム - 循環の解析 4.環境場の回転の影響 - 3.で調べた生成メカニズムを確認 5. まとめ

2. ダストデビルの数値的再現

対流混合層とダストデビルの模式図

LESモデル (Ito et al. 2010)

- 運動方程式:3次元・ブシネスク近似
- Subgrid-Scaleモデル: Smagorinskyモデル
- 格子間隔: 5m (Sec. 3)、50m (Sec. 4)
- 計算領域: 1.8km×1.8km×1.6km (Sec. 3)、4.5km×4.5km×3.0km (Sec. 4)

LESによるダストデビルの再現

12:00-12:30、赤は正の鉛直渦度、緑は負の鉛直渦度

3. ダストデビルの生成メカニズム 一 循環の解析

ダストデビルの生成メカニズムの提案

ダストデビルの回転の起源は?

0.2sテップのデータをもとに12:10のダストデビルのコア付近の高度 7.5mでの流体粒子の時間を遡ったトラック(Backward Trajectory 解析)

「循環」の解析

の寄与F_d + Baroclinic生成B

浮力項の勾配による水平渦度生成

MSの傾斜→渦度収支での Tilting

MSの追跡の手順

正負の鉛直渦度の等値面(12:10)

ダストデビル(対流セルの頂点、最も鉛直渦度が大きい)を 横切る高度7.5mの水平の20m×20mのMS(12:10)

約2000本のBackward Trajectoriesが構成する、約40000 個(1辺40cm)の三角形のパッチで追跡

シェードはz 座標(m)

ダストデビルの強い回転の成因

もともとダストデビルの周囲にあった循環が保存しながら 収束し、大きな鉛直渦度を生成

最下層、水平面で各点での 半径200mの範囲の循環

対流混合層のもつ水平面内の循環の 統計的性質

統計的に分布する循環のスケーリング

- 対流混合層には循環σ(Γ)が内在
- (初期を除き)h×w_{*}でスケール

循環と水平渦度のTiltingの高度分布

最下層、各格子点を中心と する円内に含まれる循環の 標準偏差Γ_s(各高度@12:00 から12:30平均)

円内に含まれる水平渦度から 鉛直渦度へのTilting項の積分 の標準偏差(各高度@12:00)

対流混合層の中層で循環、Tilting項とも最も大きい → 対流がBarocliniclこ生成する水平渦度のTiltingにより、 水平面内での循環が生成

4.環境場の回転の影響

4.環境場の回転の影響

- 時計回り、反時計回りのダストデビルがほぼ同数生成 (Sinclair 1969、Holtonの教科書)
- ヒートアイランド循環の影響で、単一の回転方向の渦を観測(Fujiwara et al, 2011, SOLA)

LESにコリオリ効果を導入し、ダストデビルへの影響を みる

コリオリ効果の導入=環境場の水平面内の循環を課す

環境場の回転のダストデビルへの影響+ダストデビル の生成メカニズムを考察

地球自転程度の環境場の回転の影響

モデル最下層の正の鉛直渦度ζ,・負の鉛直渦度ζの最大値の時系 列の包絡線(前後5分間の最大値(実線)と最小値(点線))

より強い回転の影響

モデル最下層の正の鉛直渦度ζ,・負の鉛直渦度ζの最大値の時系列の包絡線(前後5分間の最大値(実線)と最小値(点線))

→ 強い回転により大きな ζの生成が抑制?

強いダストデビル生成に最適な 環境場の回転

最下層水平面の正の鉛直渦度の最大値の12:00~16:00の平均

等値面 紫:ζ>0.04 s⁻¹、白:ζ<-0.04 s⁻¹ 地表面のShade: 最下層の鉛直速度

最も強い正のζ生成

回転が強くなると、対流セルの水平スケールは小さく → 広範囲からの循環の収束が起きにくい

ダストデビルの生成メカニズムの考察

モデル最下層の正の鉛直渦度な・負の鉛直渦度なの最大値の時系列の 包絡線(前後5分間の最大値(実線)と最小値(点線))

16

5. まとめ

理想的な対流混合層におけるダストデビル の生成をLESで再現

【循環の解析】

- ・地表面付近の広い水平面から循環をほぼ 保存しながら収束→ダストデビル生成
- 対流混合層はダストデビルの生成につな がる循環を内在

【環境場の回転の影響】

 ・環境場の循環がダストデビルにおいて収 東、上述の結論を支持