V. 古温度計による太古の地球の古気候変動の復元

*アルケノン古水温指標(U^{ĸ'}₃₇)

U^{K'}₃₇ (C₃₇ alkenoneの不飽和比) $U_{37}^{K'} = \frac{C_{37:2}}{(C_{37:2} + C_{37:3})} alkenone$ $U_{37}^{k'} = 0.034T + 0.039$ Prahl et al. (1988)

- ・長鎖アルケノンはハプト藻の円石藻に由来する ・春~初夏の温度を主に記録
- *GDGT古水温指標(TEX₈₆)

$$TEX_{86} = \frac{III + IV + VI}{II + III + IV + VI}$$

Schouten et al. (2002)

- ・古細菌由来のGDGT
- ・古細菌は海洋表層から中層まで分布?

E.huxleyi

VI Crenarchaeol regio-isomer

起源となる生物の生態によって記録される温度に偏り(季節性など) →複数の古水温指標の必要性

Reconstruction of sea surface temperature by alkenone thermometry

Fig. Alkenone-based temperature in sediment cores collected from the Nishishichitou Ridge off central Japan. (Sawada & Handa,1998, Nature)

North Pacific

Subtropical circulation weak

strong

30

Fig. Gas chromatograms of ketone fractions in sediments of Dabusu Lake.

Relationship between $U^{k'}_{37}$ and temperature

Fig. Comparison of lacustrine alkenone calibration equations for the U_{37}^{κ} Index. The marine calibrations of *Emiliania huxleyi* (Prahl andWakeham, 1987) and *Chrysotila lamellosa* (Conte et al., 1994) are shown for comparison.

Dabusu Lake (northeastern China) DB-B core site

TEX₈₆ paleoceanography: Cretaceous paleotemperature.

Fig. Latitudinal variations of surface ocean temperatures from planktonic foraminiferal δ^{18} O and TEX₈₆ (Takashima et al., 2006). Modified from Bice et al. (2003), Huber et al. (2002) and Jenkyns et al. (2004).

TEX₈₆ paleoceanography

暁新世/始新世最温暖期(Paleocene Eocene Thermal Maximum))にお ける北極海の古水温変動の復元

Fig. Palynology and geochemical results across the PETM of the IODP Hole 302-4A (Sluijs et al., 2006, Nature, 441, 610)

新たな古水温指標[1] 珪藻由来バイオマーカー

(1,14-diol & 12-OH m.a.)

■珪藻のProboscia属に由来(Shinninghe Damste et al., 2003)

(Shinninghe Damste et al., 2003)

Scan number

* Rampen *et al.* (2008) *Proboscia*による生産は湧昇流増大の初期に 増加することから、1,14-diolと1,15-diolの比は 湧昇流強度の指標となる

Diol index =
$$\frac{(C_{28} + C_{30})1, 14 - diol}{(C_{28} + C_{30})1, 14 - diol + C_{30}1, 15 - diol}$$

・培養試料の生育温度(種)によって
 1,14-diolおよび12-OH m.a.の組成に違い

→古水温指標となり得る可能性?

0 1-

Introduction 新たな古水温指標[1] 珪藻由来バイオマーカー (1,14-diol & 12-OH m.a.)

* Rampen *et al.* (2009)

・培養試料 →生育温度と相関(同じ種でも生育温度により違い)

・アラビア海の表層堆積物を分析

Introduction 新たな古水温指標[2] 2種類のジオールの量比

(1,13-diol & 1,15-diol)

- ・第四紀の海洋堆積物中でよく見られる (Versteegh et al., 1997)
- •真正眼点藻から検出される (Volkman et al., 1992)

・表層水温に相関(Rampen et al., 2011)

DIX (Diol Isomer Index) :1,13-diolと1,15-diolの量比 $DIX = \frac{C_{30}1,15 - diol}{(C_{28} + C_{30})1,13 - diol + C_{30}1,15 - diol}$

ジオール古水温計と他の古水温指標との関係

【表層】

【中層】

Introduction 藻類バイオマーカーを用いた新たな古水温指標

DCI (Diol Chain length Index): 1,14-diolの炭素鎖の長さ

$$DCI = \frac{(C_{300} + C_{301})}{(C_{280} + C_{281}) + (C_{300} + C_{301})}$$
1,14 - diol
UD (Unsaturated Diol Index): 1,14-diolの不飽和比
 $UD = \frac{(C_{280} + C_{300})}{(C_{280} + C_{300}) + (C_{281} + C_{301})}$ 1,14 - diol
MA₁₂(12-OH M.A. ratio): 12-OH m.a. の炭素鎖の長さ
 $MA_{12} = \frac{C_{29}}{C_{27} + C_{29}}$ 12-OH m.a.
DIX (Diol Isomer Index): 1,13-diolと1,15-diolの量比
 $DIX = \frac{C_{30}1,15 - diol}{(C_{28} + C_{30}),13 - diol + C_{30}1,15 - diol}$

・各指標について、太平洋の堆積物コアに適用
 →太平洋でも利用可能であるか検討する

(小林,沢田,未公表データ)

本研究で新たに設定

Samples 北太平洋表層堆積物&深海掘削コア

Result 北太平洋表層堆積物中のアルケノン古水温指標

Result 北太平洋表層堆積物中のジオール古水温計

Result 表層堆積物中のジオール古水温計(DCI, UD)

1,14-diolを用いた指標→明瞭な相関はみられない

(小林,沢田. 未公表データ)

Result 表層堆積物中のジオール古水温計(MA₁₂)

Result 表層堆積物中のジオール古水温計(DIX)

DIX :	1,13-diolと1,15-diolの量比
DIX -	C ₃₀ 1,15 - <i>diol</i>
	$(C_{28} + C_{30})$ 1,13 - <i>diol</i> + C_{30} 1,15 - <i>diol</i>

・大きく外れているのは日本海

・淡水の影響の大きい
 場所では外れた値になる
 (Rampen et al., 2011)

Result 表層堆積物中のジオール古水温計 (DIX)

⁽小林, 沢田. 未公表データ)

Expedition 320/321 Pacific Equatorial Age Transect (PEAT)

(by USIO)

.

Pickel and

and Marson

OD21 Riser vessel "Chikyu"	Â	JOIDES Resolution	
Length Overall app.210.0m		Length Overall	app.143.0m
Breadth 38.0m		Breadth	21.3m
Depth 16.2m		Depth	9.8m
Draught 9.2m		Draught	7.5m
Gross Tonnage app.57.500t	XXX	Gross Tonnage	app.7.500t
Max.Complement 150persons		Max.Compleme	nt 122person

Chikyu vs. JR

1.5 th

6363

by JAMSTEC

Fig. PC piston shoe extending through APC/XCB bit. APC: advanced piston corer, RCB: Rotary core barrel, XCB: extended core barrel

(by USIO)

APC

XCB

- Early Eocene climatic optimum.
- Middle Eocene (little high-resolution data for detailed time scales and hunt for PETM like events); interaction between carbonate and silicous deposits.
- Eocene/Oligocene transition, including first "two-step" lock-step change in δ^{18} O and CCD.
- Pre-Oligocene transition.
- late Oligocene climatic evolution.
- Oligocene/Miocene biotic turnover.
- Mid-Miocene climatic optimum
- Early Miocene carbon cycle.
- Targets Oligocene/Miocene boundary and subsequent events includes the "Mi-1" glacial events, on a background of strong ~400 kyr eccentricity cycles in δ^{18} O and δ^{13} C.
- Recovery of mid-Miocene climatic optimum, and formation of East Antarctic ice-sheet.

Discussion 赤道太平洋コア中のHPTと古水温変動

(小林,沢田.未公表データ)

Discussion 赤道太平洋コア中のHPTと古水温変動

参考文献

- Bice, K.L., B.T. Huber, and R.D. Norris., Extreme polar warmth during the Cretaceous greenhouse?: Paradox of the Late Turonian δ18O record at DSDP Site 511. *Paleoceanography* 18:1029/2002PA000848, 2003.
- M. H. Conte, A. Thompson, and G. Eglinton, Primary production of lipid biomarker compounds by *Emiliania huxleyi*: Results from an experimental mesocosm study in fjords of southwestern Norway, *Sarsia*, *79*, 319-331, 1994.
- Huber, B.T., R.D. Norris, and K.G. MacLeod., Deep-sea paleotemperature record of extreme warmth during the Cretaceous. *Geology* 30:pp. 123–126, 2002.
- Jenkyns, H.C., A. Forster, S. Schouten, and J.S. Sinninghe Damsté., High temperatures in the Late Cretaceous Arctic Ocean, *Nature* 432, pp. 888–892, 2004.
- Prahl F. G., Muehlhausen L. A., and Zahnle D. L., Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions, Geochimica et Cosmochimica Acta, vol. 52, Issue 9, pp.2303-2310, 1988.
- Prahl and Wakeham, Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment, *Nature* 330, 367 369, 1987.
- Rampen, Sebastiaan W. Schouten, Stefan Koning, Erica Brummer, Geert-Jan A. Sinninghe Damsté, Jaap S., A 90 kyr upwelling record from the northwestern Indian Ocean using a novel long-chain diol index, Earth and Planetary Science Letters, Volume 276, Issue 1-2, pp. 207-213, 2008.

参考文献

- Rampen, Sebastiaan W., Stefan Schouten, Ellen C. Hopmans, Ben Abbas, Anna A.M. Noordeloos, Judith D.L. van Bleijswijk, Jan A.J. Geenevasen, Jaap S. Sinninghe Damsté, Diatoms as a source for 4-desmethyl-23,24-dimethyl steroids in sediments and petroleum, 2009.
- Rampen, Sebastiaan W., Stefan Schouten, Jaap S. Sinninghe Damsté, Occurrence of long chain 1,14-diols in *Apedinella radians, Org. Geochem.* 42 Volume 42, issue 5, pp. 572–574. 2011.
- Sawada, K. and Handa, N., Variability of the path of the Kuroshio ocean current over the past 25,000 years. *Nature*, 392, 592-595, 1998.
- Schouten S., Hopmans E.C., Schefusz E., and Sinninghe Damste J.S., Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?, Earth and Planetary Science Letters, Vol. 204, Issue 1-2, pp. 265-274. 2002.
- Sinninghe Damsté J.S., Kuypers M.M.M., Schouten S., Schulte S., Rullkötter J., The lycopane / C31 n-alkane ratio as a proxy to assess palaeoxicity during sediment deposition. Earth and Planetary Science Letters 209, pp. 215-226, 2003.
- Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J.S., Dickens, G.R., Huber Matthew, Reichart G.-J., Stein R., Matthiessen J., Lourens L.J., Pedentchouk N., Backman J., Moran K., Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature. 441, pp. 610–613. 2006.

参考文献

- Takashima R., Nishi H., Huber B.T., and Reckie M., Greenhouse world and the Mesozoic ocean, Oceanography Vol. 19, No. 4, 2006.
- Versteegh G. J. M., Bosch H.-J., and De Leeuw J. W., Potential palaeoenvironmental information of C24 to C30 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids; A critical review. *Org. Geochem.* 27, pp. 1–13. 1997.
- Volkman J. K., Barrett S. M., Dunstan G. A., and Jeffrey S. W., C30–C32 alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae. *Org. Geochem.* 18, pp. 131–138, 1992.
- K. G. Zink, D. Leythaeuser, M. Melkonian, and L. Schwark., Temperature dependency of long-chain alkenone distributions in recent to fossil limnic sediments and in lake waters 1, Geochimica et Cosmochimica Acta, vol. 65, Issue 2, pp.253-265, 2001.