C型小惑星リターン サンプルの科学

橘 省吾 (東大理) はやぶさ2 サンプラーチーム

第6回 はやぶさ2からサイエンスを考える会 12.15.2011

始原天体リターンサンプルの科学

target materials / processes stage プレソーラー粒子・安定同位体異常 銀河化学進化 彗 C 星 有機物・氷・CHON同位体異常 2 分子雲物質進化 型 3 初期太陽系円盤物質進化 高温物質・元素分別・有機物 <u>ا</u>\ 4 微惑星変成作用 熱変成·水質変成 惑 カワ 5 MBA・NEA活動 衝突·宇宙風化 星 長寿命・短寿命放射性核種 6 1-5 の年代軸

C型小惑星リターンサンプルの科学

stage

- 1 銀河化学進化
- 2 分子雲物質進化
- 3 初期太陽系円盤物質進化
- 4 微惑星変成作用
- 5 MBA・NEA活動
- 6 1-5 の年代軸

衝突破壊・合体のプロセスの履歴を含めた謎解き.微小天体の衝突過程をモデル化.微惑星のアナログ天体としての微小天体の姿を理解する

微惑星から小惑星に至るまでの**熱進化**の 紐解き.時間軸を付け,軌道進化の理論 も加味して熱進化の履歴を理解する

微惑星から小惑星に至るまでの鉱物・ 水・有機物相互作用による**有機物の多様 化**を探る

微惑星が取り込んだ物質を調べ,原始太 陽系内での**物質循環**を探る

Murchison (CM2)

Murchison (CM2)

			and the second	
	stage	target materials / processes	radioactive dating	
1	銀河化学進化	プレソーラー粒子・ 安定同位体異常	U-Pb [LIMAS]	
2	分子雲物質進化	有機物・氷・ CHON同位体異常	(SLR abundances)	
3	初期太陽系円盤 物質進化	高温物質・元素 分別・有機物	Pb-Pb, Al-Mg, Hf-W	
4	微惑星変成作用	熱変成·水質変成	Mn-Cr, Pb-Pb	
5	MBA・NEA活動	衝突・宇宙風化	K-Ar, I-Xe, Pb-Pb, GCR, SW	
M-7000F		COMPO 15.0	<v 10.5mm<="" th="" wd="" x80=""><th>100 μ m</th></v>	100 μ m

✓ 初期太陽系を m-km (~AU) で理解 ✓ 想像から実体へ

C型小惑星リターンサンプルの科学

リターンサンプルによって新たにわかること stage 1 銀河化学進化 ✓情報の残存率・変化率 ★無バイアスサンプルのもつ過去(銀河)・低温プロセス 2 分子雲物質進化 初期太陽系円盤 3 物質進化 time √小惑星での物質進化の "場" の直接理解 4 微惑星変成作用 √無汚染:地球・海・生命材料の最終状態 5 MBA・NEA活動 ✔宇宙環境・軌道進化 6 1-5 の年代軸 ✓一天体の誕生から現在までの進化シナリオ

C型小惑星リターンサンプルの科学

	stage	target materials / processes
1	銀河化学進化	プレソーラー粒子・安定同位体異常
2	分子雲物質進化	有機物・氷・CHON同位体異常
3	初期太陽系円盤物質進化	高温物質・元素分別・有機物
4	微惑星変成作用	熱変成·水質変成
5	MBA・NEA活動	衝突・宇宙風化
6	1-5 の年代軸	長寿命・短寿命放射性核種

熱·小天体物理·有機物進化·物質循環