ー段式ガスガンを用いた 複合材料の耐衝撃性

新井 和吉 (法政大学 理工学部 機械工学科)

「日本における超高速衝突実験の現状と将来展望」 惑星科学研究センター, 2011/12/12

法政大学新井研所有の一段式ガスガン(3台)

衝突試験機を利用した主な研究テーマ

- <u>液体およびCFRPを用いたスペース</u>
 デブリシールドの性能評価
- ・ セラミックスへの微粒子衝突損傷

- <u>CFRPのバードストライクによる</u> 損傷特性
- ・航空機用CFRPの平板高速斜め衝突 損傷
- バードストライク実験における
 模擬鳥材料の検討

- <u>CFRP製硬式野球用ヘルメットの</u>
 <u>性能評価</u>
- ・硬式用バット・FRP製ソフトボール バットの反発特性

液体およびCFRPを用いたスペース デブリシールドの性能評価

高橋、柴田、新井、長谷川:平成22年度スペースプラズマ研究会(CD-ROM), 2(2011) 高橋、新井、島田:第54回宇宙科学技術連合講演会講演集(CD-ROM), 3101(2010)

研究背景

宇宙開発や国際宇宙ステーション[ISS]の建設 など人類の宇宙での活動は活発になっている

人工衛星から欠落したボルトや塗料、使用済みの衛星等、 スペースデブリと呼ばれる宇宙のゴミが増加している

スペースデブリは低軌道で<u>約7~8km/s</u>という非常に 速い速度で周回しているため、質量が小さくても宇宙構 造物に衝突した場合、<u>大きな被害をもたらす危険性があ</u> る

研究背景

- スペースデブリの防御方法
- •直径10cm以上

地上から観測可能

•直径1cm未満

地上から観測不可能 📥 既存のシールドで防御可能

•直径1~10cm

<u>地上から観測困難</u>

➡ 既存のシールドでは防御困難

宇宙構造物の軌道を修正

既存のスペースデブリシールド

シールドに求められる性能

<u> 直径1~10cmのデブリを防御可能なシールドが必要である</u>

打ち上げによる輸送経費の削減のために軽量化が必須である

スペースデブリシールドの防御性能を向上させ、 かつ軽量化を図ったシールドの開発

一段式ガスガンを用いて

- 各構成材料単体での衝突実験を行い、
 貫通限界速度や、衝突時の材料物性パラメータの取得
- ホイップルシールドの貫通限界曲線の数値解析
- スモールスケール(3/10スケール)の,
 液体およびCFRPを用いたスペースデブリシールドを作製し,
 液体層の厚さを変化させた場合の貫通限界速度の測定

・ISAS/JAXAの2段式軽ガスガンを用いて, 実スケールでの衝突実験

液体を用いたシールド

飛翔体

- 材質PC (円柱型)
 直径7mm 長さ14mm
 スカート部 7.15mm
- 質量 0.64g
- 衝突速度範囲
 - 5.3~5.9km/s

15 HØSEI

CFRPによる 軽量化

板厚	炭素繊維	エポキシ	積層構成	積層枚数
t=1mm	T700	#2500	$(0/90)_2]_8$	8ply
t=5mm	T700	#2500	$(0/90)_{10}/0]_{S}$	42ply

	密度(kg/m ³)
アルミニウム合金	2700
CFRP	1555

アルミニウム合金よりも約<u>42%</u>軽量

CFRP与圧壁の超音波探傷試験

三次元超音波検査装置 Matrixeye[™]EX (東芝 電力システム社(株))

CFRP与圧壁の超音波探傷

結論

① シールド内部に液体層を付加したシールドは防御 性能が大幅に向上することが確認された

- ② 超音波探傷試験の結果から、後面与圧壁には AI合金の方が望ましい
- ③ シールド前面にCFRPを用いることによって 軽量化がなされ、さらに防御性能の向上が確認された

軟体衝突におけるCFRPの 損傷挙動 (バードストライク)

小峰, 杉目, 梶原, 新井: 航空宇宙技術, vol.10, pp.11-17(2011) 小峰, 杉目, 新井, 梶原, 福重: 日本航空宇宙学会 第52回構造強度に関する講演会講演集, pp.1-3(2010)

HOSEI

<u>研究背景</u>

- ▶ 航空機は異物と衝突することがあり、中でも鳥との衝突(バードスト ライク)は高速度・高重量という条件のため最も危険である
- ▶ CFRPは航空機用材料として盛んに使用されており、今後CFRPをエンジン部材等、より重要な場所で使用するためには、バードストライクによる損傷機構を明らかにし、より耐衝撃性の高いCFRPを開発する必要がある

<u>研究目的</u>

- ▶ 強化繊維およびマトリックス樹脂を変化させた3種類のCFRP 積層板を用い、鳥を模擬した軟体球を衝突させ、衝突エネル ギーおよび衝突角度がCFRP積層板の耐衝撃性に及ぼす影響を検討
- ▶ 有限要素解析を行い、軟体球衝突のCFRP積層板の損傷機 構について検討

垂直衝突試験

斜め衝突試験

衝突角度α:30°45°60°75°90°(垂直衝突)

CFRPの繊維、マトリックス樹脂の影響を調査

衝突角度の影響を調査

α

試験片寸法:220×100mm (ターゲットエリア180×100mm) 裏面9箇所にひずみゲージを貼り, 衝突時の動ひずみを測定

Туре	T700/2500	T800/2500	T800/3900
Fiber	T700	T800S	T800S
Matrix resin (Epoxy)	#2500	#2500	#3900-2B
Stacking sequence	[(0/45/0/-45) ₂] _s 16ply	[(0/45/0/-45) _s] _s 16ply	[(0/45/0/-45) ₂] _s 16ply
Average thickness	2.64mm	2.98mm	3.05mm
Tensile strength (fiber)	4900MPa	5490MPa	5490MPa
Elastic modulus (fiber)	230GPa	294GPa	294GPa

高強度·高靭性

<u>飛翔体</u>

<u>ゼラチン(新田ゼラチン(株))</u> 高密度ポリエチレン製のサボ

直径約25mm 質量約9.0gの球体

超音波探傷試験結果 ※青色の濃い領域が損傷部分 左側:固定端,右側:自由端

<u>衝突エネルギーと損傷面積率の関係</u>

斜め衝突による超音波探傷試験結果

斜め衝突による 規格化損傷面積率-衝突角度(E=76J/mm,119J/mm)

<u>数値解析</u>:衝突解析コード:LS-DYNA

CFRPと軟体球の衝突現象を再現 応力分布よりCFRPの損傷機構について検討

<u>CFRP試験片のモデル化(T800/2500)</u>

ー層ごとソリッド要素でモデル化各層 の繊維方向,繊維直交方向,面外方 向に縦弾性係数・せん断弾性係数・ ポアソン比を定義

T800S/2500	ρ[kg/m^3]	Ea[GPa]	Eb[GPa]	Ec[GPa]		
	1598	171.7	8.8	8.8		
	vba	vca	veb	Gab[GPa]	Gbc[GPa]	Gca[GPa]
	0.02	0.02	0.34	4500	2400	4500

ρ:密度 E:縦弾性係数 v:ポアソン比 G:せん断弾性係数a:繊維方向 b:繊維直交方向 c:板厚方向

<u>層間剥離のモデル化</u>

Dycoss 離散クラックモデル $\left(\frac{\max(\sigma_n, 0)}{T}\right)^2 + \left(\frac{\sigma_s}{S(1 - \sin\phi\min(0, \sigma_n))}\right)^2 = 1$

T[MPa]	$S[{ m Mpa}]$	$\Phi\left[ext{degree} ight]$
80	120	80

軟体球のモデル化

SPH要素

(Smoothed Particle Hydrodynamics) 要素数:3544

組成がほぼ水 高速衝突時に流体的な挙動

均質な圧縮性流体と考え 密度を1,000kg/m³ ゼラチン球を再現

$$P = C_0 + C_1 \mu + C_2 \mu^2 + C_3 \mu^3$$

$$\begin{cases} C_0 = 0.0 MPa \\ C_1 = 2068 .0 MPa \\ C_2 = 5500 .0 MPa \\ C_3 = 15500 .0 MPa \end{cases} \qquad \mu = \frac{\rho}{\rho_0} - 1$$

P: **E力** C: 定数 ρ₀: 初期密度 ρ: 密度

試験片の挙動比較 (T800/2500 V=220.5m/s E=73.2J/mm)

実験と解析でのひずみの比較 (T800/2500 V=137.3m/s E=27.9J/mm)

面内せん断応力分布 T800/2500 [(0/45/0/-45)s]s V=220.5m/s E=73.2J/mm 衝突後0.20ms

36

H⁄2SEI

37 HØSEI

結論

CFRP積層板の軟体球衝突実験を行い、軟体衝突におけるCFRPの 耐衝撃性および損傷機構の検討を行った結果,以下のことがわかった

▶ 垂直衝突実験から、強化繊維は損傷の進展に影響を与え、マトリックス樹脂は損傷を発生させる臨界エネルギーと損傷の進展に影響を与えている

▶斜め衝突実験において,損傷面積率は高衝突角度で最大となり,衝突 速度の垂直成分が大きく影響する脆性的損傷である

▶[(0/45/0/-45)s]sのCFRP積層板と軟体球の衝突解析を行った結果, +45°層が高いせん断応力を受け、高せん断応力領域が積層板端部に 沿うように進展していた、このことから実験でも+45°層の端部でせん断 応力が高まることで、端部から層間剥離が進展した

CFRP製硬式野球用 ヘルメットの性能評価

高橋、寒河江、新井、時枝、齊藤:日本機械学会 シンポジウム、スポーツ・アンド・ヒューマン・ダイナミクス2010講演論文集, pp.1-3(2010)

硬式野球ボールは<mark>硬く</mark>、頭部への死球は<mark>脳震盪</mark>、 頭蓋骨骨折など<mark>深刻な怪我</mark>をする恐れがある

脳震盪・・・記憶力や人格に後遺症を残す可能性がある

安全基準が制定されたことにより、頭蓋骨骨折は見られなくなったが、脳震盪を起こす選手は見かけられる

現在使用されているヘルメットの 緩衝性能は十分であるとは言えない

安全に競技を行うために<u>ヘルメットの緩衝性能を向上</u> させることが重要となっている

・研究目的:硬式野球用ヘルメットシェル材へのCFRPの適用

人頭模型

ヘルメット

HØSEI

評価方法

板状シェル材の性能評価

最大加速度と面密度

板厚1.0mmのCFRPを用いることで 加速度を同等以下に抑え、軽量化することが可能

圧力分布と損傷観察

<u> <圧力分布></u>

	PC (<i>t</i> =2.0mm)	ABS (<i>t</i> =2.0mm)	2D (<i>t</i> =1.0mm)	PW (<i>t</i> =1.0mm)	PW+2D (<i>t</i> =1.0mm)	1 <u>0 mm</u> 1 MPa
						2.5MPa 5MPa
30m/s						10MPa 15MPa

PC, ABS樹脂に比べ、板厚1.0mmのCFRPは、圧力分布が同等もしくは同等以下

<u><CFRPシェル材の外部損傷および内部損傷></u>

		30m/s		40m/s			
	1.0mm	1.5mm	2.0mm	1.0mm	1.5mm	2.0mm	
2D	0	0	0	×	0	0	
PW	×	0	0	×	0	×	
PW+2D	0	0	0	×	0	0	

©: no damage

O: only internal damage

×: external damage & internal damage

板厚1.0mmのCFRP-PW+2Dのシェル材は加速度を同等以下に抑え、 軽量化、衝撃荷重の分散に優れており、損傷が発生しにくい

試作したCFRPヘルメットの性能評価

- <u>ヘルメット</u>
- □ PCヘルメット
- □ ABS樹脂ヘルメット
- □ CFRPヘルメット
 - ・未塗装のPW+2D
 - ・塗装処理を施したPW+2D

厚さ: 1.0mm

未塗装のCFRPヘルメット

塗装処理を施したCFRPヘルメット

JIS規格、SG規格に基づき、曲率を有した人頭模型を使用しヘルメットを被せ、 衝突実験を行った interproduct and the approximation <math>interproduct and the approximation and the approximation <math>interproduct and the approximation and the approximation and the approximation and the approximation <math>interproduct and the approximation a

CFRPヘルメットとABS樹脂ヘルメットの比較

48 HØSEI

CFRP**ヘルメットの性能評価**

Ma	terial	Thickness [mm]	Total mass [g]	Impact location	Impact velocity [m/s]	Peak acceleration after conversion [m/s ²]	Comparison with PC (Total mass)	Comparison with PC (Acceleration)
РС			110	Side of head	28.1	2102		
		2.0	448	Earflap	31.8	2867	-	-
1.00	2.0	419	Side of head	30.0	2258	-6.4%	+7.4%	
ABS		385	Earflap	30.8	2553	-14.1%	-11.0%	
	No paint	No paint	245	Side of head	28.7	2180	45 20/	+3.7%
CFRP Pa			243	Earflap	31.9	2822	-43.3%	-1.6%
	Painting	1.0	202	Side of head	26.1	1585	3/1 8%	-24.6%
	raming	292	292	292	Earflap	30.0	2396	-54.070

CFRP製バット等に用いられている 塗装接着剤を用いることで塗装部分 の破損は改善されると考えられる

結論

シェル材にCFRPを用いた硬式野球用ヘルメットの 緩衝性能を、PC,ABS樹脂シェル材と比較検討し た結果、以下のことが分かった

 CFRPの最大加速度は、積層構成の違いや板厚増 加による大きな差異は見られないが、PC、ABS樹脂 と比較すると微小ではあるが抑制する

ロ 板厚2.0mmのPC, ABS樹脂と比較すると同板厚 のCFRPは, 圧力分布が小さくなり, 1.0mmで同等も しくはそれ以下となる

ロ CFRPをシェル材に用いてヘルメットを試作し、PC ヘルメットと比較した結果、厚さ1.0mmで加速度が増 加することなく、約35%軽量化することが可能である

