

	「日本における超高速衝突実験の現状と将来展望」2	011.12.12-13@神	戸大学惑星科学研究センター
15:30 - 17:30	Micro/Nano Satellite & Debris Issues (Session	3) Chair: Toshiy	a Hanada
NSS-03-0301	IDEA: In-situ Debris Environmental Awareness	Masahiko Uetsuhara	Kyushu University
NSS-03-0302	How Small Satellites Can Be Hazardous in Comparison to Massive Satellites	Yuya Ariyoshi	Kyushu University
NSS-03-0303	Development of a Mechanical De-orbiting System for a 3-Unit CubeSat	Ceyhun Tola	Istanbul Technical University
NSS-03-0304	Development Status of Micro-satellite De-orbit Mechanisms for Active Prevention and Reduction of Space Debris	Toshinori Kuwahara	Tohoku University
NSS-03-0305	Installation of an Active Debris Sensor on a Small Satellite for In Situ Space Dust Measurement	Pauline Faure	Kyushu Institute of Technology
NSS-03-0306	Orbital Decay Accelerator: A Case of QSAT- EOS	Shunsuke Onishi	Kyushu University
17:30 - 17:45	1st Day Closing		
Kyushu Instit	tute of Technology	Con	nputational Mechanics Lab.

「日本における超高速衝突	実験の現状	と将来展望」 2011.12.12-13@神戸大学惑星科学研究センター
平成23年度体語	削に⁻	ついて
教授 技術職員 外国人研究生 修士1年 協力者 ィンターンシップ		1名 1名 1名 6名 7名(1名は留学生) 5名 1名(助教) 1名
Kyushu Institute of Technology		Computational Mechanics Lab

	「日本における超高速衝突実験の現状と将来展望」 2011.12.12-13@神戸大学惑星科学研究センター								
ŀ	H23年度運用中ならびに開発中のガン								
No.	No. 種類 内径 速度 用途 備考								
		(11111)	(KIII/S)						
1	ガスガン 25 0.1-0.3 ジェットエンジン 九大から								
2	ー段ガン	30	0.01	自動車衝突安全	岡大から				
3	ニ段ガン	5	2 – 5	エジェクタ実験	自作				
Λ	4 - 5 衝突回避 まれもから								
4	4 - 校 ル ノ 30 1 - 2 ^{小型衛星完全破壊} 東北人から								
5	5 プラズマガン 10 太陽電池放電 開発中								
6 レールガン 0.2-0.3 ジェットエンジン 開発中									
Kvushu	Kyushu Institute of Technology Computational Mechanics Lab								

「日本における超高速衝突実験の現状と将来展望」 2011.12.12-13@神戸大学惑星科学研究センター							
九州工業大学の銃の紹介							
銃の名称	大型 二段式軽ガス銃	小型 二段式軽ガス銃	ガス銃				
外観							
全長 [m]	7	3	3				
発射管内径 [mm]	5, 14, 30	5	25				
圧縮管内径 [mm]	60	20	-				
速度 [km/sec]	~ 4	~ 5	~ 0.3				
速度計測方法	ワイヤーカット法	レーザカット法	レーザカット法 高速度カメラ				
研究内容	小惑星探査機の サンプルリターンに向 けたインパクトヘッド の形状評価	国際標準化に向けた エジェクタ評価実験に 関する研究	次世代航空機エンジン の軽量化に向けた 任意形状飛翔体発射 装置の開発				
Kyushu Institute of Tech	nology	Cor	mputational Mechanics Lab.				

	「日本における超高速衝突実験の現状と将来展望」2011.12.12-13@神戸大学惑星科学研究センター カエ大のコンデンサバンク							
Maximum charging voltage [kV]Capacitance [mF]Storing 	e Storing Maximum energy [kJ] Maximum discharge current [kA] [usec]	Capacitance [mF]	Maximum charging voltage [kV]					
16 750 96 500 30	96 500 30	750	16					

Kyushu Institute of Technology

Computational Mechanics Lab.

	「日本における超高速衝突実験の現状と将来展望」 2011.12.12-13@神戸大学惑星科学研究センター										
-	Table 1. Microsatellite impact parameters										
Shot	$M_t(g)$	$M_p(g)$	V _{imp} (km/s)	$E_{imp}/M_t (J/g)$	Impact Direction	N _{frag}					
HVI	740	4.03	4.44	53.7	Normal	1500					
LVI	740	39.2	1.45	55.7	Normal	1500					
1	1300	39.2	1.66	41.5	Normal	1300					
2	1283	39.2	1.66	42.0	Parallel	1000					
3	1285	39.2	1.72	45.1	Normal	1500					
F	1515	39.2	1.74	40.7	Normal	2400					
R	1525	39.3	1.78	39.3	Normal	1250					
	HVI 4.44 km/s 4.44 km/s 1/3 1/3 1.66 km/s 39 g 1.72 km/s 39 g 1.74 km/s 39 g 1.74 km/s 39 g 1.78 km/s 1.78 km/s 39 g 1.78 km/s 1.78 km/s										
Kyushu l	Institute of	Technology			Computational Med	hanics Lab.					

「日本における。	高速的	「突実」	険の現	観状とれ	等来展	望」20)11.12.	12-13	3@ł	神戸大学惑星科学研究センター
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION + View the NASA Portal										
Near Earth Object Program										
NEO BASICS	SEARCH PI	ROGRAMS	DISC	OVERY ST	ATISTICS	SPACE	MISSIONS	NE	ws	FAQ
OBBIT DIAGRAMS	ORBIT ELE	AENTS	CLOSE A	PPROACH	IES	IMPACT RISE	K IMA	GES	BELA	TEDLINKS
	OTION LEE		OLOOLI			A CT THO			TIELEA	
			Back to	o main Impa	ict Risk Page					
		99	942 A	pophis	(2004 N	IN4)				
		Ea	rth Im	pact Ri	isk Sum	mary				
					-	,				
	Tori	no Scale (ma	ximum)	0		Vim	pact 12.59	(m/s		
	Palerr	no Scale (ma	ximum)	-3.08		Vinf	inity 5.87 k	n/s		
	Palerm	o Scale (cum	ulative)	-2.97			H 19.7			
	Impact Pro	bability (cum	ulative) 7	7.4e-06		Diam	neter 0.270	(m		
	Number	of Potential I	mpacts	6		1	Mass 2.7e+1	0 kg		
1						En	ergy 5.1e+0	2 MT		
Analysi 633 or	based or	n 2 radar (delay, 5	Dopplei	r, and	all abov	e are me	an value	s	
(2004	Mar-15.1	0789 to 20	008-Jan	-09.6650	088)	weighted	by impact	probab	ility	
		Orbit	diagram	and elem	ents availa	ble bere				
		0.00	diagram			olo noro.				
		Thes	e results	were comp	uted on Oct	07, 2009				1
		99	942 A	pophis	(2004 N	1N4)				
			Eart	th Impa	ct Table	<u>) </u>				
Date	Distance	Width	Sigma Impact	Sigma LOV	Stretch LOV	Impact Probability	Impact Energy	Palermo Scale	Torino Scale	
YYYY->++-DD	DD (r _{Earth})	(r _{Earth})			(r _{Earth})		(MT)			1
2036-04-13	37 0.53	0.00+00	0.000	-3.276	1.03e+03	4.3e-06	5.06e+02	-3.08	0	
2056-04-13	37 0.66	0.00e+00	0.000	0.304	5.53e+06	1.0e-07	5.06e+02	-4.97	0	1
2068-04-13	37 0.02	0.00e+00	0.000	0.335	3.11e+05	2.5e-06	5.06e+02	-3.70	0	1
2068-04-13	37 0.00	0.00e+00	0.000	1.039	4.09e+06	1.1e-07	5.06e+02	-5.04	0	
2076-04-13	37 0.10	0.00e+00	0.000	0.350	3.35e+06	2.2e-07	5.06e+02	-4.79	0	http://pao.inl.paca.gov/rick/a00042.html
2103-04-13	37 0.61	0.00e+00	0.000	0.334	4.25e+06	1.3e-07	5.06e+02	-5.17	0	nup.//neo.jpi.nasa.gov/fisk/a99942.ittili
									-	
Kyushu Institute of Technol	ogy								Co	mputational Mechanics Lab.

「日本における超高速衝突多	「日本における超高速衝突実験の現状と将来展望」 2011.12.12-13@神戸大学惑星科学研究センター					
99942 Apophis (2004 MN4) の地球への衝突の可能性						
衝突予想日	: 2036年4月13日					
衝突確率	: 4.3 x 10 ⁻⁶					
衝突速度	: 12.59km/s					
直径	: 270m					
Kyushu Institute of Technology	Computational Mechanics Lab.					

「日本における超高速衝突実験の現状と将来展望」 2011.12.12-13@神戸大学惑星科学研究センター

小惑星と地球の衝突防げ ロシア、ロケット打ち上げ検討(1/2)

同宇宙庁のアナトリー・ペルミノフ長官はロシアのラジオ 局に「地球に接近し、衝突の可能性があると聞く。特別な 宇宙船で衝突回避が可能だ」と述べた。近く、NASAや欧 州宇宙機関、中国国家航天局の担当者を招いた会議を 計画している。

衝突を避けるため、宇宙船をぶつけるなどで軌道を変えることが考えられる。米映画「アルマゲドン」では小惑星を 核兵器で破壊して衝突を避けようとするが、ペルミノフ長 官は「核兵器は使わない」としている。

米科学アカデミーによると、直径140メートル以上の小 惑星が都市や周辺に落下すると、住民や生態系に深刻な 影響が出ると考えられている。

Kyushu Institute of Technology

Computational Mechanics Lab.

平成20年度九州工業大学修士論文発表
結論
●衝突誘起プラズマは地球低軌道と比較して
3mm: 6桁 (前方100mm)
1mm:4桁(前方80mm)
大きいプラズマ密度であった
●TSA閾値は電源電圧59V以上かつ、衝突より 1µsec 以内に
3mm : 230W
1mm : 300W
以上になる必要がある
●PSA閾値は衝突より5msec 以降で
59V-1.6A以上かつ110W以上を
満たし続ける条件
知的機能設計工学講座

	「日本における超高速衝突実験の現状と将来展望」 2011.12.12-13@神戸大学惑星科学研究センター															
実験結果1(合成石英)																
	Experiment results															
Shot No.	temper	treatment	I ~ WP [mm]	[km/sec]	Crater	Spall	Ejecta mass [mg]									
09-101		Chemical polishing	100	4.03	4.16	8.33	88.5									
09-102	C1100P-1/ 4H	C1100P-1/ 4H Buffing C1100P-O	50	3.92	3.71	9.09	80.4									
09-117			Buffing		3.71	3.69	8.52	70.2								
09-119	C1100P-O												100	4.14	4.27	9.90
09-120	C1100P-1/ 4H	Nothing		4.17	4.47	10.93	83.2									
約40倍																
	飛翔体質量 2.0 mg															
Kyushu Insti	tute of Technol	ogy			Co	mputationa	Mechanics Lab.									

「日本における超高速衝突実験の現状と将来展望」2011.12.12-13@神戸大学惑星科学研究センター Tests and Results Hypervelocity Impact (3/7) Results								
Т	arget Material							
Solar Array CFRP/AI AI Coupon Honeycomb Honeycomb								
Projectile Velocity [km/s] 5.37 4.79 4.97								
Projectile Mass [mg]	1.5	1.5	1.6					
Ejecta Mass [mg]	68.8	10.3	41.1					
Ratio Ejecta Mass/Projectile 45.9 6.9 25.7								
 Widely used aerospace materials that produce a non negligible amount of ejecta. 								
□ Expensive materials.								
□ Do not fulfill project purposes <u>Glass/epoxy laminate PCB</u>								
K wigen u Institute of Technology		Computatio	onal Mechanics Lat					

	「日本における超高速衝突実験の現状と将来展望」 2011.12.12-13@神戸大学惑星科学研究センター								
	おわりに								
No	No _{廷短} 内径 速度 _{田冷} _{进业}								
INO.	作的知识	(mm)	(km/s)	用述	加方				
1	ガスガン	25	0.1-0.3	ジェットエンジン	九大から				
2	ー段ガン	30	0.01	自動車衝突安全	岡大から				
3	ニ段ガン	5	2 – 5	エジェクタ実験	自作				
1									
4		30	1 – 2	小型衛星完全破壊	未追入がら				
5	プラス・マカン		10	太陽電池放電	開発中				
6	6 レールガン 0.2-0.3 ジェットエンジン 開発中								
Kyushu	Kyushu Institute of Technology Computational Mechanics Lab.								