Interactions between the CSM and ISM and their Effects on Dust Grains

植田稔也/Toshiya Ueta

University of Denver Colorado, USA

第29回 Grain Formation Workshop/平成23年度銀河のダスト研究会 神戸大学惑星科学研究センター November 11, 2011

Cycle of Matter

Low/Intermediate Mass Stars ($< 8M_{\odot}$)

High Mass Stars (>8M °)

100

Blackholes

Dust Grains

Are CSM dust grains and ISM dust grains the same?

Not necessarily (e.g. Jones et al. 2001)

What happens to CSM dust before becoming ISM dust?

UNIVERSITY OF DENVER

Schematic view of an AGB star

R Hydrae - AGB Bow Shock

Infrared Image

Artist's Concept

NASA/JPL-Caltech / T. Pyle (SSC)

"Bow Shock" Around Star R Hydrae NASA / JPL-Caltech / T. Ueta (University of Denver)

🔰 UNIVERSITY OF DENVER

First far-IR bow shock discovery around an AGB star (Ueta *et al.* 2006)

Spitzer Space Telescope • MIPS sig06-029

UNIVERSITY OF DENVER

CW Leo - GALEX & Herschel

CW Leo - GALEX & Herschel

160µm

250µm + GALEX FUV (contour) 350µm Ladjal *et al*. (2010)

Color T ~ 25 K

UNIVERSITY OF DENVER

Spitzer follow-up

To obtain shock diagnostics

 IRS Long-Low (14 - 38µm, 7 pointings, red & yellow)

神戸大学惑星科学研究センター 11/11/11

MIPS SED Mode
 (52 - 97µm, 3 pointings, pink)

UNIVERSITY OF DENVER

Spitzer follow-up

To obtain shock diagnostics

- IRS Long-Low (14 - 38µm, 7 pointings, red & yellow)
- MIPS SED Mode
 (52 97µm, 3 pointings, pink)

Not detected by IRS.

UNIVERSITY OF DENVER

Not detected by IRS.

UNIVERSITY OF DENVER

UNIVERSITY OF DENVER

70µm emission seems *dust continuum*.

Far-IR Emission Region

Far-IR Emission Region

/11/11

Far-IR Emission Region

Gas Hydro Models

CSM dust passes the termination shock into the shocked wind region and piles up at the CSM-ISM boundary

> van Marle et al. (2011) Cox et al. (in press)

Sky Noise < 1 MJy/sr

Spitzer - MLHES (Ueta et al. in prep)

UNIVERSITY OF DENVER

Sky Noise < 1 MJy/sr

AKARI - MLHES (Izumiura *et al. 2011*)

UNIVERSITY OF DENVER

UNIVERSITY OF DENVI

UNIVERSITY OF DENVER

 Observed ~60% (up to 80%) of the time

Dust processing happening ~60% (up to 80%) of the time

UNIVERSITY OF DENVER

Where is far-IR emitting dust?

Summary

- (1) CSM-ISM interacting regions provide THE LAST processing sites for CSM dust grains before becoming ISM dust grains
- (2) Far-IR emission of the CSM-ISM interaction regions appears in ~60% (up to 80%?) of the observed cases
 - a) in the reverse-shocked wind region, or
 - b) in the unshocked wind region illuminated by radiation from the shocked regions
 - c) what about ISM dust grains?

(3) Spectroscopic shock diagnostics

- Where? Mechanisms?
- a) Herschel sensitivity is not enough
- b) IPHAS, WISE follow-up on the presence of shocks
- c) ALMA, JWST, SPICA follow-up of shock diagnostics

UNIVERSITY OF DENVER