サイズ分布のある粒子からなる ダストアグリゲイトの衝突シミュレーション

田市无机。此本的我们

是男社社主博物雅

大村范

CPS

防制山竹椒

FILEE

©NASA

Collisional growth of dust (< µm) Planetesimal formation (> km)

Structure evolution of dust aggregates in protoplanetary disks:
✓When and how are aggregates compressed and/or disrupted ?
✓Can dust aggregates grow through collisions?

Numerical simulation of dust aggregate collisions!

Grain interaction model

Johnson, Kendall and Roberts (1971) Johnson (1987), Chokshi et al. (1993) Dominik and Tielens (1995,96) Wada et al. (2007)

Elastic spheres having surface energy

JKR and rolling resistance have been tested with experiments using $\sim 1 \mu m$ SiO₂ particles. (Heim et al. 1999; Poppe et al. 2000; Blum & Wurm 2000)

Grain interaction model

Johnson, Kendall and Roberts (1971) Johnson (1987), Chokshi et al. (1993) Dominik and Tielens (1995,96) Wada et al. (2007)

Elastic spheres having surface energy

Ballistic Particle-Cluster Aggregation (BPCA)

Formed by one-by-one sticking of monomers

Compact structure (fractal dimension ~ 3)

 Dust is expected to be compact at high velocity collisions causing their disruption
 Collisions of BPCA clusters
 → implication for growth and disruption of dust

Motivation

Collision velocity of dust in protoplanetary disks e.g., <~50 m/s (Hayashi model, without turbulence)

Is it possible for dust to grow through collisions ?

Possible for ice dust aggregates composed of particles with the same radius of $0.1\mu m$

But for silicate dust? u_{coll} for silicate = 0.1× u_{coll} for ice

What if size-distribution of constituent particles?

Interstellar dust grains:

$$r = \sim 0.025 - 0.25 \,\mu m$$

Power-law with an exponent of -3.3 to -3.6

from interstellar extinction (Mathis, Rumpl, & Nordsieck 1977)

Interaction b/w different-sized particles

Connections become strong for small particles.

Critical collision velocity for sticking of two monomers

$$\frac{1}{2}\mu v_c^2 = E_{break} = 1.5F_c \delta_c \propto R^{\frac{4}{3}}$$

$$v_c \sim \sqrt{\frac{F_c \delta_c}{\mu}} \propto R^{-1}$$

 v_c increases with decreasing reduced radius R.

 μ : Reduced mass, F_c : Separation force, δ_c : Compression (separation) length

But small particles make aggregates weak?

Energy for catastrophic disruption $E_c \sim 10n_k E_{break} \propto n_k R^{4/3}$

 n_k :Number of contacts

$$\frac{E_{c,L}}{E_{c,S}} \sim \frac{2 \times R_L^{4/3}}{4 \times R_s^{4/3}} \approx 10 \left(\frac{R_L/R_S}{10}\right)^{4/3}$$

Do collisions of aggregates composed of particles with a size distribution encourage dust growth?

Simulations of collisions between BPCAs composed of particles with various size distributions.

✓ Growth efficiency: $f = (M_{\text{large}} - M_{\text{target}})/M_{\text{proj}}$ Critical collision velocity for disruption of aggregates u_{coll} at f = 0

Initial Conditions and Parameters

Head-on collisions of BPCA clusters with the same size • Particle size distribution $n(r)dr \propto r^{-3.5} dr$ • $r = 0.1 \mu m \times 100$, $0.025 \mu m \times 3200$ (binary: total mass= 0.1×150) • $r = 0.1 \mu m \times 200$, $0.025 \mu m \times 6400$ (binary: total mass= 0.1×300) • $r = 0.2 - 0.025 \mu m$, N=6600 (continuous: total mass= 0.1×201.6)

ICe ($E = 7.0 \cdot 10^{10}$ Pa, v = 0.25, $\gamma = 100$ mJ/m²), critical rolling displace. $\xi_{crit} = 8$ Å
Collision velocity $u_{coll} = 20 - 700$ m/s

•*r*=0.1µm×200, 0.025µm×6400 (binary: total mass=0.1×300)

•*r*=0.1μm×200, 0.025μm×6400 (binary: total mass=0.1×300)

•r=0.2μm - 0.025μm N=6600 (continuous: total mass=0.1×201.6)

•r=0.2μm - 0.025μm N=6600 (continuous: total mass=0.1×201.6)

Growth efficiency

(ice)

Summary and Implication

Simulations of collisions of aggregates composed of particles with a size distribution

Particle size distribution leads to large growth efficiency.

encouraging dust growth and planetesimal formation

•The critical collision velocity $u_{coll,crit}$ is unchanged? $u_{coll,crit}$ for ice ~ 200 m/s

 $u_{\text{coll,crit}}$ for silicate = 0.1× $u_{\text{coll,crit}}$ for ice ~ 20 m/s

Caution! These $u_{coll,crit}$ are for head-on collisions. Offset collisions must be investigated. Can dust grow through collisions?