

プラズマ中ダストの帯電揺らぎによる凝集と成長 ~分子からクラスター、ダストへの成長~

(独)産業技術総合研究所 太陽光発電工学研究センター 布村正太

> 九州大学 システム情報工学研究科 白谷正治、古閑一憲、渡辺征夫

講演内容

1.地上におけるダスト成長実験の概要

・実験環境と観察例

・成長形態とキーとなる素過程

·観察手法

2.粒子の成長過程

- ・分子からクラスター、ナノ粒子へ (気相反応)
- ・ナノ粒子からダストへ (電気的作用)
- ·ダストの成長 (表面反応)
- 3. 帯電揺動によるナノ粒子凝集の抑制

・凝集の相図

対象とするダストの成長環境

1.重力下

- 2.ガス種
 - ·水素(H_2) + シラン(SiH₄)
 - (用途:太陽電池の発電層)
 - ・アルゴン(Ar) + Si(CH₃)₂(OCH₃)₂
 - (用途:集積回路用の絶縁膜)
- 3.ダストの種類
 - ·Si粒子(水素含有10%程度)
 - ·SiOCH粒子 DMDMS
- 4. ダストのサイズ: 10um以下(成長時間 < 1h)
- 5.ダストの帯電量: 1e-10³e,+1e
- 6.ダストの密度: 10⁶ 10¹² cm⁻³
- 7.ダストとプラズマの密度比:10⁻⁴-10²
- 8. 圧力: 0.1Torr-10Torr (平均自由行程10um-1mm)
- 9. プラズマの大きさ:10cm程度
- 10.ガス温度:常温-250度
- 11. 解離度(プラズマとガス密度比): 10-8-10 -11

^{独立行政法人}產業技術総合研究所

産業分野におけるダストの成長例

半導体ドライエッチング

Ar plasma at 200mTorr & 600W

絶縁膜の成膜

•Discharge conditions

Reactor temperature	:100 °C
Total gas pressure	: <i>p</i> = 133 Pa, Ar: Si(CH ₃) ₂ (OCH ₃) ₂ = 40:1
Discharge power	:75W (V _{pp} = 800V,V _{dc} = -360V)

S. Nunomura, M. Kita, K. Koga, M. Shiratani, and Y. Watanabe, J. Appl. Phys. **99**, 083302 (2006).

G. S. Selwin et. al., J. Vac. Sci. Technol. A9, 2817 (1991). J. Appl. Phy 独立行政法人 産業技術総合研究所

ダスト成長の様子

10mm

成長時間: ナノ粒子への成長:数秒 微粒子への成長:数分~1時間

発生場所: 電極前面(プラズマシース) ラジカル生成が活発

成長時の形態・帯電・運動

講演内容

1.地上におけるダスト成長実験の概要

・実験環境と観察例

・成長形態とキーとなる素過程

·観察手法

- 1. 材料分子、重合体 質量分析法
- 2.クラスター、ナノ粒子 (フォトンカウンティング)
- 3. ダスト(微粒子) レーザー散乱法 (偏光強度比、ミー散乱)

材料分子・重合体の検出:質量分析法

A. A. Howling, L. Sansonnens, J. L. Dorier, and Ch. Hollenstein J. Appl. Phys. 75, 1340 (1994).

クラスター・ナノ粒子の検出:レーザー散乱法

Shiratani M and Watanabe Y 1998 Rev. Laser Eng. 26 449

ダスト(微粒子)の検出:レーザー散乱

講演内容

- 1.地上におけるダスト成長実験の概要
 - ・実験環境と観察例
 - ・成長形態とキーとなる素過程
 - ·観察手法
- 2.粒子の成長過程
 - ・分子からクラスター、ナノ粒子へ (気相反応)
 - ・ナノ粒子からダストへ (電気的作用)
 - ・ダストの成長 (表面反応)
- 3. 帯電揺動によるナノ粒子凝集の抑制

・凝集の相図

実験装置

S. Nunomura and M. Kondo, J. Appl. Phys. 102, 093306 (2007).

分子からクラスター・ナノ粒子への成長

材料ガス(シラン)の分解:断面積

シランポリマーの重合化:反応係数

	Table 10 Badical-SiH, reactions					
	reaction	⊿H (298 K) (eV)	$k_c (500 \text{ K}) (\text{cm}^3 \text{ s}^{-1})$	$k \pmod{(\mathrm{cm}^3 \mathrm{s}^{-1})}$	conditions	ref
	$H + SiH_4 \rightarrow H_2 + SiH_3$	-0.54	1.2(-9)	$2.8(-11) \exp\left[-\frac{1250}{T}\right]$	high pressure	a
				2.5(-13)	9.5 torr He, 295 K	b
	$Si + SiH_4 \rightarrow Si_2H_2 + H_2$ $\rightarrow Si(H_2)Si + H_2$	$-0.34 \\ -0.87$	7.2(-10)	3.5(-10)	Si(3p ² , ³ P ₂) 0.1 Torr Ar, 500 K	с
	$Si^* + SiH_4 \rightarrow Si_2H_2 + H_2$ $\rightarrow Si(H_2)Si + H_2$	-1.1 -1.65	7.2(-10)	7.4(-10)	Si(3p ² , ¹ D ₂) 0.1 Torr Ar, 500 K	с
	$SiH + SiH_4 \leftrightarrow Si_2H_5^*$		4.3(-10)	6.9(-10)	P ₀ (Torr), He 300 K	d
	$\mathrm{Si_2H}_5^* + \mathrm{M} \rightarrow \mathrm{Si_2H_5} + \mathrm{M}$	-1.81		$\times \left[1 - \frac{1}{1 + 0.33P_0}\right]$		
	or $Si_2H_3 + H_2$	≈ 0		3.3(-12) 2.7(-10)	500 K, <50 mTorr 2 Torr He, 300 K	e f
反応定数:	:大			2.8(-10) 4.3(-10)	2 Torr Ar, 300 K 5 Torr He, 300 K	g f
	$\begin{array}{l} \underline{\operatorname{Si}}_{4}\underline{\operatorname{H}}_{2}\underline{+}\underline{\operatorname{Si}}_{4}\underline{\operatorname{H}}_{6}\underline{+}\underline{\operatorname{Si}}_{2}\underline{\operatorname{H}}_{6}^{*}\underline{-}\underline{-}\underline{-}\\ \underline{\operatorname{Si}}_{2}\underline{\operatorname{H}}_{6}^{*}\underline{+}\underline{\operatorname{M}} \rightarrow \underline{\operatorname{Si}}_{2}\underline{\operatorname{H}}_{6}\underline{+}\underline{\operatorname{M}} \end{array}$	-2.40	4.6(-10)	2.0(-10)	P ₀ (Torr), He 300 K	h
	$Si_2H_6^* + M \rightarrow Si_2H_6 + M$	-2.40		$\times \left[1 - \frac{1}{1 + 0.43P_0}\right]$ 1.1(-10)	P_0 (Torr), He	i
				$\times \left[1 - \frac{1}{1 + 0.63P_0}\right]$	-300 K	
	$\mathrm{Si_2H}_6^* \to \mathrm{H_3SiSiH} + \mathrm{H_2}$	+0.06		<1.0(-11)		
J. Perrin et al., Ch	em. Phys. 73 , 383 (1982).			$\times \left[\frac{1}{1+0.63P_0}\right]$		
M. J. Kushner, J. /	Appl. Phys. 63 , 2532 (1988	3).		1.1(-10) 1.3(-10) 2.5(-10)	1 Torr He, 300 K 1 Torr He, 300 K 1 Torr SE, 300 K	J k 1

シランポリマーの重合化:反応係数

	$\begin{split} &\operatorname{Si}_{2}\mathrm{H}_{2}+\operatorname{SiH}_{4}\rightarrow\operatorname{Si}_{3}\mathrm{H}_{4}+\mathrm{H}_{2}\\ &\operatorname{Si}_{2}\mathrm{H}_{3}+\operatorname{SiH}_{4}\rightarrow\operatorname{Si}_{3}\mathrm{H}_{5}+\mathrm{H}_{2}\\ &\operatorname{H}_{3}\mathrm{SiSiH}+\operatorname{SiH}_{4}\leftrightarrow\operatorname{Si}_{3}\mathrm{H}_{8}^{*}\\ &\operatorname{Si}_{3}\mathrm{H}_{8}^{*}+\mathrm{M}\rightarrow\operatorname{Si}_{3}\mathrm{H}_{8}+\mathrm{M}\\ &\operatorname{or}\operatorname{SiH}_{2}+\operatorname{Si}_{2}\mathrm{H}_{6}\\ &\operatorname{or}\operatorname{Si}_{2}\mathrm{H}_{5}\mathrm{SiH}+\mathrm{H}_{2}\\ &\operatorname{Table}10 \ (\text{continued})\\ &\operatorname{Radical}-\operatorname{Si}_{n}\mathrm{H}_{2n+2}(n\geq 2) \ \mathrm{read} \end{split}$	-0.4/-0.05 -0.7 -2.36 +0.06 +0.075	$5 4.4(-10) \\ 4.5(-10) \\ 5.3(-10)$	$2(-10) 2(-10) 3.0(-10) \times \left[1 - \frac{1}{1 + 0.50P_0}\right]$	estimated estimated by analogy with $SiH_2 + SiH_4$ & $SiH_2 + Si_2H_6$	m
	reaction	⊿ <i>H</i> (298 K) (eV)	$\substack{k_c \ (500 \ {\rm K}) \\ ({\rm cm}^3 \ {\rm s}^{-1})}$	$k \pmod{(\mathrm{cm}^3 \mathrm{s}^{-1})}$	conditions	ref.
	$\operatorname{Si}_{2}H_{6} \rightarrow \operatorname{Si}_{3} + \operatorname{Si}_{4}$ $\rightarrow H_{2} + \operatorname{Si}_{2}H_{5}$	$-0.66 \\ -0.64$	1.2(-9)	$2.4(-10) \exp\left[-\frac{1250}{T}\right]$	6 6 % 33%	a
心正致:入	$\underline{\mathrm{SiH}_2 + \mathrm{Si}_2\mathrm{H}_6} \leftrightarrow \mathrm{Si}_3\mathrm{H}_8^*$		4.2(-10)	4.2(-10) $\times \left[1 - \frac{1}{1 + 0.44F_0}\right]$	P ₀ (Torr), He 300 K	h
	$_{Si_3}\mathrm{H}_8^* + \mathbb{M} \to Si_3\mathrm{H}_8 + \mathrm{M}$	-2.42		2.7(-10) $\times \left[1 - \frac{1}{1 + 1.87 P_0}\right]$	P ₀ (Torr), He 300 K	i
	$_{Si_2}H_6^* \rightarrow H_3SiSiH + SiH_4$	-0.06		<6.0(-11) $\times \left[1 + \frac{1}{1 + 1.87P_0}\right]$		
				5.7(-10) 4.6(-10)	1 Torr He, 300 K 5 Torr Ar, 300 K	j k
	$\mathrm{SiH}_3 + \mathrm{Si}_2\mathrm{H}_6 \rightarrow \mathrm{SiH}_4 + \mathrm{Si}_2\mathrm{H}_5$	-0.10	4.5(-10)	$4(-10) \exp\left[-\frac{2500}{T}\right]$	estimated	n
	$\mathrm{II} + \mathrm{Si}_3\mathrm{H}_8 \to \mathrm{Si}_2\mathrm{H}_5 + \mathrm{Si}\mathrm{H}_4$	-0.74	1.5(-9)	$2.4(-10) \exp\left[-\frac{1250}{T}\right]$	estimated by analogy with $H + Si_2H_6$	_

シランポリマーの分布

・クラスターーナノ粒子の成長期には、ポリマーが多く存在。
・ダストへの成長時には、高次のポリマーは減少。
ラジカルが、ダストの表面に付着しダストの成長に寄与

ポリマー、クラスター、ナノ粒子の分布

K. Koga, Y. Matsuoka, K. Tanaka, M. Shiratani and Y. Watanabe, Appl. Phys. Lett. 77, 196 (2000).

^{独立行政法人}產業技術総合研究所

講演内容

- 1.地上におけるダスト成長実験の概要
 - ・実験環境と観察例
 - ・成長形態とキーとなる素過程
 - ·観察手法
- 2.粒子の成長過程
 - ・分子からクラスター、ナノ粒子へ (気相反応)
 - ・ナノ粒子からダストへ (電気的作用)
 - ·ダストの成長 (表面反応)
- 3.帯電揺動によるナノ粒子凝集の抑制

・凝集の相図

ナノ粒子の帯電量

帯電量の揺らぎ

J. Goree, Plasma Sources Sci. Technol. 3, 400 (1994).

C. Cui and J. Goree, IEEE Trans. Plasma Sci. 22, 151 (1994).

Figure 3. Temporal evolution of charge number N = Q/e, for a small particle (a = 10 nm) in an H⁺ plasma with $T_i/T_e = 0.05$ and $n = 10^{15}$ m⁻³. When discrete electronic charges are taken into account, fluctuations of the particle's charge are apparent, due to electrons and ions arriving at random times. From [5].

Fig. 7. Charge distribution functions. Data is shown for small grains in a hydrogen plasma with $T_i/T_e = 1$. The average charge is $\langle N \rangle = -0.8$ and -2.0 for $aT_e = 0.14$ and 1 nm eV, respectively. Note that the charge sometimes fluctuates to a positive polarity.

正帯電ナノ粒子:形成の素過程

正負帯電ナノ粒子の凝集:急速成長のモデル

正負帯電粒子の凝集による急速成長:実験結果

講演内容

- 1.地上におけるダスト成長実験の概要
 - ・実験環境と観察例
 - ・成長形態とキーとなる素過程
 - ·観察手法
- 2. 粒子の成長過程
 - ・分子からクラスター、ナノ粒子へ (気相反応)
 - ・ナノ粒子からダストへ (電気的作用)
 - ·ダストの成長 (表面反応)
- 3.帯電揺動によるナノ粒子凝集の抑制
 - ・凝集の相図

ダストの成長(ダスト表面でのラジカル堆積)

薄膜成長と同様のメカニズム

ダストの成長(ダスト表面でのラジカル堆積)

ダストのサイズは、成長時間にほぼ比例

Y. Hayashi and K. Tachibana, Jpn. J. Appl. Phys. 33, L476 (1994). Y. Hayashi and K. Tachibana, Jpn. J. Appl. Phys. 33, L804 (1994). ダストの形状は、球形

講演内容

- 1.地上におけるダスト成長実験の概要
 - ・実験環境と観察例
 - ・成長形態とキーとなる素過程
 - ·観察手法
- 2. 粒子の成長過程
 - ・分子からクラスター、ナノ粒子へ (気相反応)
 - ・ナノ粒子からダストへ (電気的作用)
 - ·ダストの成長 (表面反応)
- 3.帯電揺動によるナノ粒子凝集の抑制

・凝集の相図

帯電揺動によるナノ粒子の凝集抑制:モデル

仮定

- 1.ナノ粒子密度 >> プラズマ密度
 - •電子付着により一部の粒子が負帯電(素電荷程度)
 - •電子とイオンが交互に付着することで帯電量が時々刻々と変化
 - ・負帯電粒子間でのクーロン反発
- 2.クーロン反発 エネルギー > 熱運動のエネルギー

3.帯電周波数 > 粒子間の衝突周波数

実験装置·観測手法

・間欠的な放電を実施

- •1回目の放電:ナノ粒子の生成
 - ナノ粒子のサイズと密度を制御
- •2回目の放電:ナノ粒子の凝集の観察
 - プラズマの密度を制御

凝集抑制の様子

凝集の相図:実験結果

凝集の相図:理論解析

_{独立行政法人}產業技術総合研究所

まとめ

1. 地上におけるダストの成長を紹介し、サイズに応じて様々な成長形態が 異なるを説明した。

2. 粒子の成長には、気相反応、帯電及び表面反応が介在する。特に、正 負に帯電したナノ粒子による凝集は成長速度が速い。

3. 帯電揺動によるナノ粒子の凝集抑制効果を紹介した。

産業用プラズマ中でのダストの成長が、宇宙環境でのダストの成長の理解の一助となれば幸いである。

