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1 Evolution of the Visible and Hidden Star Formation
What individual analyses tell about the star formation history?

FUV FIR

Dust

Obviously the amount of UV light absorbed by dust is 
l d t FIR l th H t bt ionly measured at FIR wavelengths. Hence, to obtain an 

unbiased view of the cosmic star formation, it is crucial to 
treat the information of both FUV and FIR (and others).treat the information of both FUV and FIR (and others).

Now various multiwavelength survey data are available, 
and we can study the cosmic SF history a coherent andand we can study the cosmic SF history a coherent and 
synthesized manner. 



Evolution of the FUV and FIR luminosity functions

(T k hi B t & B ll 2005)(Takeuchi, Buat, & Burgarella 2005)



Evolution of visible and hidden SF in the Universe

Hidd SFHidden SF

Directly observed SFy

The local fraction of the hidden SF is 50-60%, while the 
fraction at z=1 reaches more than 90%.

(Takeuchi, Buat, & Burgarella 2005)



Dusty era of the Universe

Later works confirmed this “dusty era of the Universe”, 
and revealed that the dominance of the hidden SF 
continues even toward higher redshifts (z ~ 3) (e.g., 
Murphy et al. 2011, Cucciati et al. 2011).

(Cucciati et al. 2011)
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Dusty era of the Universe

Later works confirmed this “dusty era of the Universe”, 
and revealed that the dominance of the hidden SF 
continues even toward higher redshifts (z ~ 3) (e.g., 
Murphy et al. 2011, Cucciati et al. 2011).

With a comparison between individual datasets from 
different bands now we have a rough picture of the visibledifferent bands, now we have a rough picture of the visible 
and hidden part of the cosmic SF.

What is next? What does the different evolution at different 
wavelength mean? 

To answer this question we need to model the dependenceTo answer this question, we need to model the dependence 
structure between UV and IR luminosities.



2 Bivariate Luminosity Function Analysis: Formulation

To find a dependence structure between UV and IR, we 

Copula: a mathematical tool to combine marginal distributions

need to construct a UV-IR bivariate LF. For this, we have 
to deal with a mathematical problem how to construct a 
bi i t di t ib ti f ti f it i lbivariate distribution function from its marginals.

Question: 
can we (re)construct a 
multivariate probability 
density function (PDF) 
from its marginals?from its marginals?

Pougaza (2009)
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Copula: a mathematical tool to combine marginal distributions

Obviously, there is an infinite number of degrees of freedom 
to choose the original PDF, because the dependence structure 
is not specified.

Then is this problem completel nsol able?Then, is this problem completely unsolvable? 



Copula: a mathematical tool to combine marginal distributions

Obviously, there is an infinite number of degrees of freedom 
to choose the original PDF, because the dependence structure 
is not specified.

Then is this problem completel nsol able?Then, is this problem completely unsolvable? 

The answer is not entirely if we can restrict or specify theThe answer is not entirely, if we can restrict or specify the 
dependence between variables. The tool  to deal with this 
problem is the copula, with a general form as follows:

(1)[ ])(),(),( 221121 xFxFCxxG =

where F1(x1) and F2(x2) are two univariate marginal 
cumulative distribution functions (DFs) and G(x1, x2) is acumulative distribution functions (DFs) and G(x1, x2) is a 
bivariate DF.



Copula: a mathematical tool to combine marginal distributions

Theorem: Sklar’s theorem

Let G be a joint distribution function with margins F1 and 
F2. Then, there exists a copula C such that for all x1, x2,  

(2)[ ])(),(),( 221121 xFxFCxxG =

This theorem guarantees that any bivariate DF with given 
margins can be expressed with a form of equation (2). This 
theorem also guarantees that if we fix F1, F2, and the 
dependence structure C, the bivariate DF is uniquely 
determineddetermined.



Gaussian copula

Since the choice of copula is literally unlimited, we have to 
introduce a guidance principle.

In many data analyses in physics, the most familiar 
meas re of dependence might be the linear correlationmeasure of dependence might be the linear correlation 
coefficient ρ. Mathematically speaking, ρ depends not only 
on the dependence of two variables but also the marginalon the dependence of two variables but also the marginal 
distributions, which is not an ideal property as a 
dependence measure. Even so, a copula having an explicit
dependence on ρ would be convenient. 

In this work we use a copula with this property theIn this work, we use a copula with this property, the 
Gaussian copula.



Gaussian copula
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Gaussian copula

We then define a Gaussian copula CG (u1, u2; ρ) as

[ ] (7)
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The cumulative BLF constructed with the Gaussian copula is 
then expressed as
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The differential BLF is obtained by differentiating eq.(9). 



The Gaussian BLFs: example

(Takeuchi 2010)

The shape of the Gaussian copula BLF depends strongly on ρ. 



Benefit of copula: incorporating observational selection effects

Selection effect: always exists in any kind of astronomical data.

In a bi(multi)variate analysis, there are two categories of 
observational selection effects.

1. Truncation
We do not know if a source would exist below a detection 
limit.

2. Censoring
We know there is a source, but we have only an upper 
(sometimes lower) limit for a certain observable.

We have to deal with both of these selection effects to construct 
a BLF from observed data at the same time. We should be 
careful especially when we use multiwavelength datasets.



Benefit of copula: incorporating observational selection effects

With a copula BLF, we can take into account various kind of 
selection effects properly (even though the formulation is messy!).



3 Bivariate Luminosity Function Analysis: Result

Using the Gaussian copula, now we can estimate the bivariate 

UV-IR bivariate LF from z = 0 to z = 1

g p ,
luminosity function (BLF). The visible and hidden SFRs should 
be directly reflected to this function. 

Dust is produced by SF activity, but also destroyed by SN blast 
waves as a result of the SF Many physical processes are relatedwaves as a result of the SF. Many physical processes are related 
to the evolution of the dust amount. Thus, first of all, we should 
describe statistically how it evolved. y

Local samples: IRAS, GALEX (UV, IR-selected) + redshifts (644)
AKARI GALEX (IR l d) d hif (3891)AKARI, GALEX (IR-selected) + redshifts (3891)
(A. Sakurai’s talk)

High-z samples: Spitzer GALEX (UV IR-selected) + redshiftsHigh-z samples: Spitzer, GALEX (UV, IR-selected) + redshifts
(z = 0.7, 1.0) (~ 350-1000 for each redshift bin)



Nonlinearity of the UV-IR bivariate LF

1. Diagonal
The energy from SF is 

2

ty

emitted equally at UV 
and IR with any SF 
acti it

1
2

m
in

os
it activity.

2. Upward
The more active the SF

IR
 lu

m The more active the SF  
in a galaxy is, the more 
luminous at the IR 3
(dusty SF).

3. Downward
The more active the SF
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Copula likelihood for the BLF estimation
Since we have already estimated the univariate LF at each 
band, we use these LFs as given marginals. We then estimate 

l t th li l ti  b th lik lih donly one parameter, the linear correlation ρ by the likelihood 
below. Index jband

ik is the upper limit flag at each band 
(0:detection, -1: upper limit). Another index k indicates the(0:detection, 1: upper limit). Another index k indicates the 
selected band (1: UV-sel, -1: IR-sel).

i f i fThese terms are necessary to treat information from 
upper limits.



Copula likelihood for the BLF estimation

Denominators are required to take into account the truncation 
at the selected bands (e.g., Sandage et al. 1979; Johnston 2011)



The bivariate LF at z = 0 (IRAS-GALEX sample)

: FUV-sel
: FUV-sel (UL at FIR)( )
: FIR-sel
: FIR-sel (UL at FUV)

Contour: 
Gaussian copula with theGaussian copula with the 
FUV and TIR LFs at z = 0.

ρ = 0.95±0.04



The bivariate LF at z = 0 (AKARI-GALEX sample)

: FIR-sel
: FIR-sel (UL at FUV)( )

Contour: 
Gaussian copula with the 
FUV and TIR LFs at z = 0.

ρ = 0.95±0.006



The bivariate LF at z = 0.7 (Spitzer-GALEX sample)

: FUV-sel
: FUV-sel (UL at FIR)( )
: FIR-sel
: FIR-sel (UL at FUV)

Contour: 
Gaussian copula with theGaussian copula with the 
FUV and TIR LFs at z = 
0.7.

ρ = 0.91±0.05



The bivariate LF at z = 1.0 (Spitzer-GALEX sample)

: FUV-sel
: FUV-sel (UL at FIR)( )
: FIR-sel
: FIR-sel (UL at FUV)

Contour: 
Gaussian copula with theGaussian copula with the 
FUV and TIR LFs at z = 
1.0.

ρ = 0.85±0.05



Result from the copula BLF analysis

In the Local Universe, the BLF is quite well constrained.
It is rather impressive that the estimated correlation 
coefficient ρ is very high ~ 0.95, both from IRAS-GALEX
and AKARI-GALEX datasets.
Th t tt f th L L i f d t b d tThe apparent scatter of the LFUV-LTIR is found to be due to 
the nonlinear shape of the ridge of the BLF. This bent 
shape of the BLF was implied by preceding studies (e.g.,shape of the BLF was implied by preceding studies (e.g., 
Martin et al. 2005). The copula BLF naturally reproduced 
this. 

At higher redshifts (z = 0.7-1.0), the linear correlation 
i ti ht ( 0 85 0 9) th h it i diffi lt tremains tight (ρ ~ 0.85-0.9) even though it is difficult to 

constrain the low-luminosity end from the data in this 
analysis (Spitzer-GALEX in the CDFS). It will beanalysis (Spitzer GALEX in the CDFS). It will be 
interesting to apply this method to better forthcoming data.



4 Summary
To understand the visible and hidden star formation history 
in the Universe, it is crucial to analyze multiwavelength data 
in a coherent and synthesized manner
1. The copula method is an ideal tool to combine two (or more) 

marginal univariate LFs to construct a bi(multi )variate LFs

in a coherent and synthesized manner.  

marginal univariate LFs to construct a bi(multi-)variate LFs.  
2. Copula is also useful to incorporate selection effects.
3. The Gaussian copula LF is sensitive to the linear correlation 3. e G uss copu s se s ve o e e co e o

parameter ρ. 
4. Even so, ρ in the copula LF is remarkably stable with 

redshifts (from 0.95 at z = 0 to 0.85 at z = 1.0).
5. This implies the evolution of the UV-IR bivariate LF is 

mainly due to the different evolution of the univariate LFsmainly due to the different evolution of the univariate LFs, 
and may not be controlled by the dependence structure.

Th d t d i thi k t d h b t H h lThe data used in this work are not deep enough, but Herschel, 
SPICA, and ALMA data will improve the estimates drastically.  


