2011.11.9 Grain Formation WS

晩期型星から初期太陽系までの星周アルミナ形成 ・進化史解明に向けた

非平衡普通コンドライト中のアルミナ粒子分析

瀧川 晶

東京大学 大学院理学系研究科 地球惑星科学専攻

■ 恒星系の進化

原始星形成 → 原始太陽系円盤の形成 → 微惑星・隕石母天体の形成 → 惑星形成 **■ 太陽系最古の固体物質形成 (CAI)からの太陽系**

2011年11月9日水曜日

プレソーラー粒子

early solar system

 $\begin{array}{c} \bullet \text{ Oxides} \\ \bullet \text{ Silicates} \\ 1x10^2 \\ 0 \\ 1x10^3 \\ 1x10^4 \\ 1x10^4 \\ 1x10^5 \\ 1x10^5 \\ 1x10^4 \\ 1x10^4 \\ 1x10^3 \\ 1x10^2 \\ 180/160 \end{array}$

■ 大きな同位体異常(e.g., ¹⁷O/¹⁶O_{solar}=0.037%, ¹⁸O/¹⁶O_{solar}=0.2%)
 ■ コンドライト中に<0.1%で存在

プレソーラー粒子

early solar

system

■ 大きな同位体異常(e.g., ¹⁷O/¹⁶O_{solar}=0.037%, ¹⁸O/¹⁶O_{solar}=0.2%)
 ■ コンドライト中に<0.1%で存在

プレソーラー粒子

group1: core H-burning最後のfirst dredge-up
 group3: low mass & low metallicity RedGiant

プレソーラー粒子

group1: core H-burning最後のfirst dredge-up
group3: low mass & low metallicity RedGiant
group2: cool bottom processing(low mass AGB star)

質量放出風でのダスト形成

pulsational

shocks

waves

dust formation zone

Woitke+2006

Dust-driven Wind (e.g., SedImayr & Dominik 199)
 a) 対流, 脈動による衝撃波伝搬 → 高密度領域形成
 b) 初生ダスト形成・ダスト成長, 周囲ガスとの化学反応
 c) 輻射圧を受けてダスト加速, 摩擦によりガス加速
 d) ガスの冷却によるダスト形成・成長, 周囲ガスとの化学,

evolved

stars

晚期型星

■ 赤外観測可能でプレソーラー粒子としても存在する鉱物が重要

プレソーラー粒子として解析可能

■ 存在度が高い
 ■ 酸に難溶(隕石中から抽出可能)

質量放出風でのダスト形成

晩期型星

■ 9.7-µmフィーチャー: Si-O

■ ~12-µmのブロードピーク:Al-O

e.g., Onaka+1989, Sloan and Price 1995, Sloan+1998, 2003, Miyata+2000, Speck+2000, DePew+2006

evolved

stars

2011年11月9日水曜日

O-rich AGB星の赤外観測

■ 酸化的晚期型星

:75-80%の半規則型変光星,20-25%のミラ型変光星からI3µmピーク

Sloan & Price 1995, 1998, Speck 2000, DePew+2006, Sloan+2003

	存在量	分析可能	観測可能
Al ₂ O ₃		\bigcirc	
その他酸化物	\bigcirc	\bigcirc	
 ケイ酸塩	\bigcirc	\bigtriangleup	\bigcirc
金属鉄	\bigcirc	Х	X
揮発性ダスト	\bigcirc	X	

■ アルミナ(Al₂O₃)

:最初の凝縮物、赤外観測可能、プレソーラーアルミナ

星間空間·分子雲

ISM & Molecular cloud

■ 衝撃波加熱・破砕・sputtering

- heating in shock wave <150-350K (Jäger et al. 2003)
- grain-grain collision (>20km/s)
- 衝撃波中でのsputtering (H+, He+)

■ ダストのlifetime

- ケイ酸塩のlifetime ~0.4Gyr < ダスト供給 t ~2.5Gyr (Jones et al. 1994, 1996, Tielens 1990)

 ↔ ダスト破壊の効率, SN爆発エネルギーのISMへの供給効率などの不確定さ (Jones & Nuth 2011)

- アルミナのlifetime (Wang et al. 1998) Xe⁺によるコランダムの非晶質化照射量:SiO₂の100倍, フォルステライトの10倍

■ プレソーラーアルミナ = "Stardust"

■ アルミナを通じて太陽系前史を遡る

2011年11月9日水曜日

星周アルミナ (Al₂O₃)

ロ プレソーラーAl₂O₃

- 大きな同位体異常
- AGB星・超新星→太陽系
- プレソーラーAl₂O₃ >250

Huss+1994, Hutcheon+1994, Nittler 1994,1997, 1998,2008, Strebel+2003, Zinner+2003, Choi +1998, Nguyen+2003, Makide+2009

□ プレソーラーから得られる情報

- 組成・結晶形状・結晶構造・同位体組成
- (内部結晶構造・同位体組成分布・包有物・微量元素)

✔ 表面構造 (Choi+1998)

✓結晶構造 (Stroud+2004) … ほとんど分かっていない

□ 本研究:プレソーラーアルミナの結晶形・表面構造を詳細に調べる

アルミナの同定

✔ 試料

- Semarkona (LL3.0), Bishunpur (LL3.1), RC 075 (H3.2)の酸処理残渣 - アルミナ, スピネル, SiC

✔ 同定

- カソードルミネッセンス (CL) - エネルギー分散型X線分光(EDS)

アルミナ粒子の形状

✓ 3D 形状 - 各粒子にたいして4方向からのSEM観察

アルミナの表面構造

Type A

Type C

Type **B**

:数十nmスケールで **スムースな表面** : 10-100 nmサイズ の微細構造を伴う 凸凹した表面 : Type A, B以外

アルミナの表面構造

Type **B**

	Type A	Туре В	Type C	total
Semarkona	7	13	11	31
Bishunpur	31	16	27	74
RC 075	38	35	20	93
total	76	64	58	198

✓ 電子後方散乱回折 - 170 粒子からEBSDパターンを取得

- 148粒子 (87%) からαアルミナ(コランダム)のパターン

pattern	α -Al ₂ O ₃	結晶性悪い	
測定箇所	more than 3	more than 3	
	+ + +	+ + +	
Bishunpur	57/63	6/63	
RC 075	41/56	15/56	
total	98/120	22/120	

-~82%の粒子は粒子内複数点で同一パターン:単結晶コランダム

O₂⁺の照射により金属"M"の試料表面が酸化、 スパッタリングにより分子"MO"を生じる

酸素同位体比測定

- ✓ UH Cameca ims-1280 (Makide+2009)
 - Cs⁺ ビーム径 ~30 µm <2.5 nA (¹⁶O: ≥10⁶ cps)
 - 1500×1500 µm² field aperture (試料表面で~10 µm²,基板からの酸素 <1%
 - ¹⁶O, ¹⁷O, ¹⁸Oの同時測定
 - ¹⁶O & ¹⁸O on multicollection FC & EM w/ MRP~2000 ¹⁷O on monocollector EM w/ MRP~5600
 - 標準試料: 1–10 µm 金箔に分散させたBurma spinel
 - 積分時間: 50-250 sec (10 sec × 5-20 cycles)
 - 分析精度(2-sigma): δ¹⁸O ~ 3‰, δ¹⁷O ~ 6‰
 - 分析粒子数: 111

酸素同位体比測定

✓ プレソーラー粒子を9粒子発見

プレソーラーアルミナの表面構造

■ 8粒子がスムース でない表面構造

- 1 type A? grains
- 7 type B grains
- 1 type C grain

RC075-59_#7

07_t0r0_15kV_03nA.tif

07_t70r0_15kV_03nA.tif

RC075-59_#8

08_t0r0_15kV_03nA.tif

08_t70r0_15kV_03nA.tif

RC075-58_#9

09_t0r0_15kV_025nA.tif

09_t70r0_15kV_025nA.tif

RC075-59_#22

22_t0r0_15kV_03nA.tif

22_t70r0_15kV_03nA.tif

22_t70r90_15kV_03nA.tif

22_t70r270_15kV_03nA.tif

Bis-60_#44

44_t0r0_15kV_03nA.tif

44_t70r0_15kV_03nA.tif

Bis-60_#35

35_t0r0_15kV_03nA.tif

35_t70r0_15kV_03nA.tif

15.0kV X37,000 WD 15.7mm 100nm

35_t70r90_15kV_03nA.tif

RC075-59_#49

49_t0r0_15kV_025nA.tif

49_t70r0_15kV_025nA.tif

49_t70r90_15kV_03nA.tif

49_t70r270_15kV_03nA.tif

RC075-59_#9

09_t0r0_15kV_03nA.tif

09_t70r0_15kV_03nA.tif

RC075-58_#33

33_t0r0_15kV_025nA.tif

33_t70r0_15kV_025nA.tif

プレソーラーアルミナの表面構造

プレソーラーアルミナの表面構造

■ 3点以上の分析をした粒子の結晶性

■ 粒子タイプとの関係

	single crystal	low crystallinity	unknown		low crystal- linity	unkn own
Bishunpur	57/64	7/64	0/64	А	4	0
RC 075	41/56	11/56	4/56	В	9	3
total	98/120	18/120	4/120	С	5	1
presolar	2	3	2	 total	18	4

■ プレソーラー粒子の40%は結晶性が低い (⇔ 太陽系アルミナは 13%)
 ■ 結晶性の低い粒子はTypeBに多い

プレソーラーアルミナの結晶構造

✓ プレソーラー粒子の40%は結晶性が低い
 (⇔太陽系アルミナは 13%)
 ✓ 一部の太陽系アルミナとプレソーラーアルミナの表面構造はよく似ている →酸処理起源?

α -Al₂O₃ 酸溶解実験

✓酸処理 (Huss and Lewis 1995)

- 1) 12M HF 6M HCl at 25°C for 10 days
- 2) $2M H_2SO_4 + 0.5N K_2Cr_7O_4$ at 75°C for 12 hrs
- 3) HClO₄ at 190-200°C for 2 hrs

✓ 試料: Al₂O₃ 試薬

 α -Al₂O₃ (1)

 α -Al₂O₃ (2)

水酸化物の脱水

α-Al₂O₃ 酸溶解実験

出発試料 1) HF - HCl 2) H₂SO₄ + K₂Cr₇O₄ 3) HClO₄ 25°C, 10 days 75°C, 12 hrs 190-200°C, 2 hrs α-Al₂O₃ (1)

α-Al₂O₃ (2)

1 µm

1 µm 🗖

μm

1 um

μm

✓ 表面組織に変化はみられない

プレソーラーアルミナの表面構造

プレソーラーアルミナの表面構造

✓ Prinstine SiC (Bernatowicz et al. 2003)

酸処理前

2011年11月9日水曜日

ゾルゲル法による非晶質アルミナ作成

■ アルミニウム(III)sec-ブドキシドの加水分解・縮重合反応 → 500°Cで2hか焼 (Al(O-secC₄H₉)₃ or Al(OBu)₃)

2011年11月9日水曜日

合成遷移Al₂O₃

xアルミナ

κアルミナ

合成遷移Al₂O₃の酸溶解実験

■ XRD, FT-IRで生成物を確認

2011年11月9日水曜日

合成遷移Al₂O₃の酸溶解実験

1′) **HF - HCl** 25°C, **24**h

 $Y-AI_2O_3$ 酸溶解実験

ICI 10 days

è部溶解

1') **HF - HCl** 25°C, **15hr**

Semarkona (LL3.0)

K₂**Cr**₇**O**₄ 75°C, 12 hrs

✓ 特にHFに容易に溶解
 ✓ 非晶質表面層があれば溶解
 ✓ 未発見のプレソーラー
 Al₂O₃ 相が存在する可能性

表面構造を形成した過程

アルミナ表面構造/星間空間での非晶質化

■ 衝撃波によるISMでのH⁺, He⁺のケイ酸塩への打ち込み (Jaeger et al. 2003) 10¹⁸ /cm² H&H⁺, 10¹⁷ /cm² He&He⁺, 半径~250nm粒子 - 430km/s (4keV) の一回のShockで40nmが非晶質化 (Demyk 2001, 2004, Jones 1996)

■ 希ガス照射では非晶質化に必要な照射量がケイ酸塩より1桁高い

→ ISMで部分的な非晶質化が可能

(Wang et al. 1998)

(Lammer et al. 2008)

- 初期太陽系の太陽風フラックスは今の1000倍 i.e., solar wind flux 7.2x10⁹ /cm²s (He²⁺)
 - → 原始太陽系円盤表面で太陽風が照射されれば~5年で非晶質化

コランダム表面はスパッタリングによるもの or 非晶質化・準安定相に覆われていた可能性

2011年11月9日水曜日

まとめ

- ✓ 非平衡普通コンドライト中のアルミナ200粒子の形状・ 結晶構造の詳細分析
 - typeAとtypeBの表面構造をもつ粒子が1/3ずつ
 - 87%が α-Al₂O₃と同定
- ✔ プレソーラーアルミナを9粒子発見
 - 7粒子がtypeB表面構造
 - プレソーラーアルミナの結晶性は低い
- ✓ Al₂O₃ 酸溶解実験
 - α -Al₂O₃の表面構造は酸処理で変化しない
 - 遷移・非晶質Al₂O₃ は酸処理の過程で溶解(未発見プレソーラー Al₂O₃ ?)

プレソーラーコランダムの表面構造はスパッタリング起源