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Summary

e We develop an unconditionally stable
explicit particle CFD scheme:

e Boltzmann Particle Hydrodynamics (BPH)



Steps in BPH

Space 1s divided into Cartesian cells
Finite number of particles ~10°-10’
Particles fly freely between t* and t**!

— Mass, momentum and total energy are conserved
Relax into a (LTE) state stochastically at t*!

— Not necessarily Maxwellian
— A class of Monte Carlo method

A particle has internal degrees of freedom

— Any value of ratio of specific heats



Most prominent character

* Unconditional stability

— Time step 1s not restricted by the CFL
condition, although explicit.

— Seems to contradict with CFD wisdom

 In N-S and Euler equation, time steps should be
restricted by the CFL condition.

* Why?
— Lagrangean nature
* Particles may fly beyond as many cells as like.

— (Numerical) viscosity 1s proportional to At



Other chatacteristics
Positivity
— Pressure and density do not become negative
It may happen in conventional CFD schemes

Viscosity has a physical origin
— Can handle N-S equation

Gas of zero temperature can be handled easily
— Infinite Mach number

Accuracy is increased by an ensemble average
— 100% Parallelization

Dynamic range of density can be large

— Density does not proportional to number of particles
— Contrast SPH



Disadvantage

 Statistical fluctuation
— Need large number of particles

— Restricted by memory size
— ~107 particles /2GB

 Particle number may be increased by using
parallel computers



Classifiction of Computational Fluid
Dynamics



Three levels 1n the description of fluids

Level

1.
Molecules

2 :
Distribution
function

3. Continuum
fluid

Governing equation

Newton equation

Boltzman equation
BGK eqaution

Hydrodynamic equation

Variables

Position and
velocity

Distribution
function

Density, velocity,
pressure



Classification of CFD methods

Cell/grid Particle method

Kinetic approach Cell-Boltzmann Molecular

Lattice Boltzmann | Hydrodynamics
Boltzmann Particle
Hydrodynamics

Continuum approach | Finite difference |SPH
Finite volume BSPH

Finite element




BGK equation

of ) +¢V(nf)+F-V _(nf) = (o= J)

ot .

* Collision term 1s approximated by a relaxation
— linear

* f,- Maxwellian distribution function
e 1: Relaxation time



Generalized BGK equation

* f,1s not necessary Maxwellian

* Condition
— Spherically symmetric 1n velocity space

— Conservation law
* f,,; Maxwellian
* Q: m, mc, mc*/2

[,0dV, = (nf,,0dV, = O



Time splitting of BGK equation

 Distribution function: f; time step:At
) () - BV, (1 )+ oy 0

nf (c,t+At)—nf (c,t)
- All-c-V(nf)=F-V,_(nf) + n*E,, (1) |+ O(A?)

nf(c,t+At)=[1-Atc-V-AF-V_+AtJ|nf (¢c,?)
=[1+AtJ][1-Atc-V-AtF-V _]nf(c,1)

[J]nf(c,t) = n’ Foon




Stochastic time integration
onf _ (), =

ot T

()" = S+ (1= o)




Steps in BPH

Space 1s divided into Cartesian cells
Finite number of particles ~10°-10’
Particles fly freely between t* and t**!

— Mass, momentum and total energy are conserved
Relax into a (LTE) state stochastically at t*!

— Not necessarily Maxwellian
— A class of Monte Carlo method

A particle has internal degrees of freedom

— Any value of ratio of specific heats



Numerical tests



Shock tube problem (Sod)

Domain: O<x<1
Number of cells: 1000
v=1.4

t=0.16




Test 1
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Test 1: density profile

Numerical solution vs analytic one  Courant condition can be violated

Sod shocktube gamma=1.4, t=0.16, comparison Scheme1 with shell dist and analytic sol. | 18 Sep 2008 |
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Test 3
Extreme density ratio

shocktube with extreme density ratio, 1:10*3, t=0.1, Scheme1 shell dist. |18 Sep 2008 |
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Test 4: Isothermal shock

Averaging reduces statistical fluctuation
of solution: Density and velocity
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Strong rarfaction:
Sjogreen test

Domain : O0<x< 1

Cell number 1000

Y=14

u=2.0 (case 1: No vacuum)

u=5.0 (case 2: Vacuum)
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Sjogreen test u,=2
a case without vacuum

Density and velocity Temperature

Sjogreen test: ul=2, gamma=14, t=0.18, D ensity and velocity | 22 Oct 2008 | Sjogreen test: ul=2, gamma=14, t=0.18, temperature [ 22 Oct 2008 |
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Sjogreen test, u,=5
a case with vacuum

Density and velocity Temperature

Sjogreen test: ul=5, gamma=14, t=0.1 | 22 Oct2008 | Sjogreen test: ul=5, gamma=14, t=0.1, temperature | 22 Oct2008 |
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* GComputational domain :

e cells 200x200:

e ¥=5/3
e t=0.6

Noh problem

r<1, 0<0<n/2

2x2 cells/ macro—cell *°f




Result of Noh problem

density;gamma=5/3;t=0.6 | 13 Jun 2006 | Internal Energy; gamma=>5/3; t=0.6; subcell 200x200; (2x2/cell); 20
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Viscous flow

Plane Poiseuille flow

isoille flow: 2=1.41, 1.78,3.16,5.62, 10 | 22 0ct2008 | ||]]]]




Plane Poiseuille Flow : y=1.0

y Navier-Stokes eqn. Flow field
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Plane Poiseuille flow
Kinematic viscosity: Knudsen number

kinematic viscosity-Kn | 16 Oct 2008 |
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Couette flow
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Couette flow
Viscous stress: Knudsen number
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Astrophysical applications



_Astrophysical applications

\




Inflow from L1 point
v=1.01

Mass ratio=1

=27
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2D wind coll

2D wind collison, 2000x2000, n_irk2e4, gamma=5/3, no gravity | 16 Nov 2008 |
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3D wind collision
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