Boltmann Particle Hydrodynamics

Takuya Matsuda NPO Einstein

Summary

- We develop an unconditionally stable explicit particle CFD scheme:
- Boltzmann Particle Hydrodynamics (BPH)

Steps in BPH

- Space is divided into Cartesian cells
- Finite number of particles $\sim 10^{6}-10^{7}$
- Particles fly freely between t^{n} and $\mathrm{t}^{\mathrm{n}+1}$
- Mass, momentum and total energy are conserved
- Relax into a (LTE) state stochastically at $\mathrm{t}^{\mathrm{n}+1}$
- Not necessarily Maxwellian
- A class of Monte Carlo method
- A particle has internal degrees of freedom
- Any value of ratio of specific heats

Most prominent character

- Unconditional stability
- Time step is not restricted by the CFL condition, although explicit.
- Seems to contradict with CFD wisdom
- In N-S and Euler equation, time steps should be restricted by the CFL condition.
- Why?
- Lagrangean nature
- Particles may fly beyond as many cells as like.
- (Numerical) viscosity is proportional to $\Delta \mathrm{t}$

Other chatacteristics

- Positivity
- Pressure and density do not become negative
- It may happen in conventional CFD schemes
- Viscosity has a physical origin
- Can handle N-S equation
- Gas of zero temperature can be handled easily
- Infinite Mach number
- Accuracy is increased by an ensemble average - 100\% Parallelization
- Dynamic range of density can be large
- Density does not proportional to number of particles
- Contrast SPH

Disadvantage

- Statistical fluctuation
- Need large number of particles
- Restricted by memory size
$-\sim 10^{7}$ particles /2GB
- Particle number may be increased by using parallel computers

Classifiction of Computational Fluid Dynamics

Three levels in the description of fluids

Level	Governing equation	Variables
1. Molecules	Newton equation	Pos sition and velocity
Distribution function	Boltzman equation BGK eqaution	D i s tribut tion function
3. Continuum fluid	Hydrodynamic equation	Density, velocity, pressure

Classification of CFD methods

	Cell/grid	Particle method
Kinetic approach	Cell-Boltzmann Lattice Boltzmann	Molecular Hydrodynamics Boltzmann Particle Hydrodynamics
Continuum approach	Finite difference Finite volume Finite element	SPH BSPH

BGK equation

$$
\frac{\partial(n f)}{\partial t}+\mathbf{c} \cdot \nabla(n f)+\mathbf{F} \cdot \nabla_{\mathbf{c}}(n f)=\frac{n\left(f_{0}-f\right)}{\tau}
$$

- Collision term is approximated by a relaxation
- linear
- f_{0} : Maxwellian distribution function
- τ : Relaxation time

Generalized BGK equation

- f_{0} is not necessary Maxwellian
- Condition
- Spherically symmetric in velocity space
- Conservation law
- f_{M} : Maxwellian
- Q: $m, m c_{j}, m c^{2} / 2$

$$
\int n f_{0} Q d V_{c}=\int n f_{M} Q d V_{c}=\bar{Q}
$$

Time splitting of BGK equation

- Distribution function: f; time step: Δt

$$
\left.\begin{array}{l}
\frac{\partial(n f)}{\partial t}=-\mathbf{c} \cdot \nabla(n f)-\mathbf{F} \cdot \nabla_{\mathbf{c}}(n f)+n^{2} \mathrm{~F}_{\mathrm{coll}}(t) \\
\begin{array}{rl}
n f(\mathbf{c}, t+\Delta t)-n f(\mathbf{c}, t)
\end{array} \\
\quad=\Delta t\left[-\mathbf{c} \cdot \nabla(n f)-\mathbf{F} \cdot \nabla_{\mathbf{c}}(n f)+n^{2} \mathrm{~F}_{\mathrm{coll}}(t)\right]+O\left(\Delta t^{2}\right) \\
n f(\mathbf{c}, t+\Delta t)=\left[1-\Delta t \mathbf{c} \cdot \nabla-\Delta t \mathbf{F} \cdot \nabla_{\mathbf{c}}+\Delta t J\right] n f(\mathbf{c}, t) \\
\\
\cong[1+\Delta t J]\left[1-\Delta t \mathbf{c} \cdot \nabla-\Delta t \mathbf{F} \cdot \nabla_{\mathbf{c}}\right] n f(\mathbf{c}, t)
\end{array}\right\} \begin{aligned}
& {[J] n f(\mathbf{c}, t) \equiv n^{2} \mathrm{~F}_{\mathrm{coll}}}
\end{aligned}
$$

Stochastic time integration

$$
\begin{aligned}
& \frac{\partial n f}{\partial t}=\frac{(n f)_{0}-n f}{\tau} \\
& (n f)^{n+1}=\frac{\Delta t}{\tau}(n f)_{0}+\left(1-\frac{\Delta t}{\tau}\right)(n f)^{n} \\
& P=\frac{\Delta t}{\tau}=\frac{\Delta t}{b t_{c}}=\frac{\bar{C}}{b \lambda} \Delta t=\frac{\bar{C}}{b a \Delta x} \alpha \Delta x=\frac{\alpha}{a b} \bar{C}
\end{aligned}
$$

Steps in BPH

- Space is divided into Cartesian cells
- Finite number of particles $\sim 10^{6}-10^{7}$
- Particles fly freely between t^{n} and $\mathrm{t}^{\mathrm{n}+1}$
- Mass, momentum and total energy are conserved
- Relax into a (LTE) state stochastically at $\mathrm{t}^{\mathrm{n}+1}$
- Not necessarily Maxwellian
- A class of Monte Carlo method
- A particle has internal degrees of freedom
- Any value of ratio of specific heats

Numerical tests

Shock tube problem (Sod)

- Domain: $0<x<1$
- Number of cells: 1000
- $\gamma=1.4$
- $\mathfrak{t =}=0.16$

Test 1

Choice of velocity distribution f_{0}

Black: Spherical shell Red: Maxwellain

No difference

Test 1: density profile

Numerical solution vs analytic one
Courant condition can be violated

Number of particles 100/low density section 800/high density section

CFL number $\sim 2 \alpha$ $\Delta t=\alpha \Delta x$

Test 3

Extreme density ratio

shocktube with extreme density ratio, 1:10^3, t=0.1, Scheme1 shell dist. | 18 Sep 2008 |

Density ratio $1: 10^{-3}$

Test 4: Isothermal shock

Averaging reduces statistical fluctuation of solution: Density and velocity

Ensemble average over 64 cases
Space average over 4 cells

Strong rarfaction: Sjögreen test

- Domain : $0<x<1$
- Cell number 1000
- $\gamma=1.4$
- $u=2.0$ (case 1: No vacuum)
- $u=5.0$ (case 2: Vacuum)

Sjogreen test $u_{0}=2$ a case without vacuum

Density and velocity
Temperature

Sjogreen test, $\mathrm{u}_{0}=5$ a case with vacuum

Density and velocity
Temperature

Noh problem

- Computational domain :

$$
r<1,0<\theta<\pi / 2
$$

- cells 200×200 :
2×2 cells/ macro-cell ${ }^{\circ}$
- $\gamma=5 / 3$
- $\mathrm{t}=0.6$

Result of Noh problem

No wall heating

Sigalotti,López,Donoso,Sira and Klapp, J.Compt,Phys. vol. 212 (2006) 124-149
density;gamma=5/3;t=0.6|13 Jun 2006

Internal Energy; gamma=5/3; t=0.6; subcell 200x200; (2x2/cell); 20

Viscous flow Plane Poiseuille flow

Flow profile of Poisoille flow: $\mathrm{a}=1.41,1.78,3.16,5.62,10 \mid 22$ Oct $2008||||||\mid$

Plane Poiseuille Flow : $\gamma=1.0$

Navier-Stokes eqn. Flow field

$$
v \frac{\partial^{2} V y}{\partial x^{2}}=-F \quad V y=\frac{F}{8 v}\left(1-\left(\frac{x}{1 / 2}\right)^{2}\right)
$$

Eq. Motion

$$
\frac{d c_{i y}}{d t}=-F
$$

No. cells: 1000
No. Particles: 10/cell
$\mathrm{F}=0.1$

$$
a=1-10, a=1
$$

$$
V_{\mathrm{unit}}=\sqrt{\frac{8}{\pi} R T}
$$

Plane Poiseuille flow

Kinematic viscosity: Knudsen number

Theoretical curves
$v=\frac{1}{2} \bar{C} \lambda=0.798 \lambda$
$v=\frac{R T}{\tau}=\frac{R T}{\bar{C}} \lambda=0.626 \lambda$

Couette flow

$-0.5 L \underset{-0.5 U}{\rightleftarrows}$

Couette flow

Viscous stress: Knudsen number

Astrophysical applications

Astrophysical applications
 Frame 001 | 17 Nov 2008

Inflow from L1 point $\gamma=1.01$
Mass ratio $=1$
$\mathrm{T}=27$

2D wind collision

2000×2000
$\gamma=5 / 3$
No gravity
N_in=2e10
Pentium D
45 min

3D wind collision

Density and velocity
View from z-axis
x -axis

y-axis
Bird eye view

Number of particles

