THE MASS RATIO DISTRIBUTION OF SPECTROSCOPIC BINARY STARS

Henri M.J. Boffin

ESO, Chile
Binary system

Orbital parameters i, ω, Ω, T_0

a, P, e

Distribution of these elements important to understand binary formation and compare to models
THE IMPORTANCE OF $f(q)$

- M_A and M_B and the mass ratio $q = M_B / M_A$ distributions

- Binary formation mechanisms? e.g. random pairing, $f(q)$ constant, q depends on M_A?
 - we already know that multiplicity is function of M_A
 - and possibly $f(q)$ also

- Evolution of binary systems? e.g. twins population?

- Comparison between populations or families of stars e.g. PRGs and normal G-K giants;
 - long and small periods
SPECTROSCOPIC BINARIES

- Many systems (and almost all exoplanets) are spectroscopic binaries \rightarrow Only projection ($\sin i$)

- A few are eclipsing (or transiting) \rightarrow i known

- SB: SB1 or SB2 (q known)
 - depends on Δm (generally $\Delta m \approx 1.5 - 2.5$ mag)
 - For MS star, this means SB2 if $q \geq \sim 0.65$
 - For giants, one needs $q \approx 1$
For exoplanet:

\[f(M) = \frac{(M_B \sin i)^3}{(M_A + M_B)^2} = \frac{K^3 P}{2\pi G} (1 - e^2)^{3/2} \]

As we can assume \(i \) is randomly distributed, if \(M_A \) is known, one could thus use the distribution of

\[f(M) \approx \frac{M_B^3 \sin^3 i}{M_A^2} \]

\((\text{since } M_B << M_A) \).

\[Y = f(m)/M_A = q^3/(1+q)^2 \sin^3 i \]

to determine the distribution of \(f(q) \)
THE WRONG WAY

“There is always an easy solution to every human problem – neat, plausible, and wrong.”
H.L. Mencken, 1917

Simplest way: replace \(\sin^3 i\) by \(<\sin^3 i>\)

- e.g. Aitken 35; Trimble 90; Trimble 09 (!)
THE WRONG WAY

“There is always an easy solution to every human problem – neat, plausible, and wrong.”

H.L. Mencken, 1917

Simplest way: replace $\sin^3 i$ by $<\sin^3 i>$

e.g. Aitken 35; Trimble 90; Trimble 09 (!)

THIS IS WRONG!
ASSUMING MEAN $\sin^3 i$ DOES NOT WORK!

Halbwachs 87; Mazeh & Goldberg 92; Boffin+ 92
Assuming mean $\sin^3 i$ does not work!

Errors arise because for a given $f(m)$, i and q are not independent anymore and so the mean cannot be the same as when the full range of i is allowed.

Similar for exoplanets: a posteriori distribution of $\sin i$ is dependent on m_B distribution (see also Ho & Turner 11)

Error is also due to the shape of $f(\sin^3 i)$, cf. Halbwachs 87

e.g. Mazeh & Goldberg 92
F\textsc{unctional Form Fitting}

- Instead, one could assume a $f(q)$ and then compute the $f(Y)$ and compare to observed one – using a minimisation method

 (Jaschek & Ferrer 72; Halbwachs 87; see also Tabachnik & Tremaine 02 for exoplanets)

- Disadvantage: need to assume functional form and is thus very limited

- Advantage: not tempted to see spurious peaks

- Important \textit{(although obvious) remark}: one should not compare to distribution of $f(m)$ but distribution of $\log f(m)$, cf. wide dynamic range
Am stars

- 60 orbits (for 53 Am systems)
- Fit distribution of mass function
- $M_1 = 2 M_\odot$

Assume functional forms: gaussian and power law

Carquillat & Prieur 07
60 orbits (for 53 Am systems)

Fit distribution of mass function

$M_1 = 2 \, M_\odot$

Assume functional forms

INCORRECT!

(as seen when compare to $\log f(m)$)

Carquillat & Prieur 07
Fit the $\log f(m)$ distribution

- Power law with positive index!
- Need to limit to $M_2 < 1.25 \, M_\odot$
- Gaussian is narrower

Bofin 10
S_{B}^9 DATABASE

<table>
<thead>
<tr>
<th>Spectral Type</th>
<th>Number of systems</th>
<th>\langle q \rangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>B V</td>
<td>101</td>
<td>0.3789</td>
</tr>
<tr>
<td>A V</td>
<td>67</td>
<td>0.4686</td>
</tr>
<tr>
<td>F V</td>
<td>57</td>
<td>0.6164</td>
</tr>
<tr>
<td>G V</td>
<td>43</td>
<td>0.5673</td>
</tr>
<tr>
<td>K V</td>
<td>29</td>
<td>0.6105</td>
</tr>
</tbody>
</table>

Pourbaix, Jancart & Boffin 04
Inversion Method

From \(Q = q^3 / (1 + q)^2 \), we have \(f(m) = M_A \ Q^3 \ sin^3 i \)

Thus \(Y(Q) = Q \ sin i \) is available from observations. The distribution \(\psi(Q) \) we are looking for is thus given by

\[
\Phi(Y) = \int_0^\infty \psi(Q) \ \Pi(Y|Q) \ dQ.
\]

As \(f(i) = \sin i \), this reduces to an Abel equation.

One can thus solve it, either by numerically computing it (need smoothing) or using the Lucy-Richardson inversion algorithm

Boffin+ 92, 93, Cerf & Boffin 94, Mazeh & Goldberg 92
Back to Am stars: Extending the sample

- Literature search → created a new catalogue to have more orbits
- 162 orbits of Am stars: 98 SB1 and 64 SB2
- For SB2, we directly have q

- I apply Richardson-Lucy inversion method – check with SB2
With SB2, I can also check the methodology, i.e. random i
M_1 constant ($=2M_\odot$) fitting $\log f(m)$

- works!

→ can apply to the whole sample of SB1
MASS RATIO DISTRIBUTION

- **SB1**: R-L method
- **SB2**: direct
- Or SB1 + SB2: R-L method
 \[\rightarrow\] compatible

- Final \(f(q)\) will depend on ratio between SB1 and SB2
- Observational biases difficult to assess!

Am SB1 (R–L inversion) + SB2 (observed)

![Graph showing mass ratio distribution](image)

27 October 2011 - Kobe, Q5S
Observational Biases

- Magnitude selection (Öpik effect)
- Detection limit K_D, where $K < K_D$ are not found
 - Typically $K_D > 3-4 \sigma_{RV}$
- Orbits too long cannot be obtained (no solution but also K too small)

- One need to be aware of these and, if sure we understand them, correct them, or be sure we do not need to care about them.
THE SOLAR-LIKE SAMPLE – NEARBY AND IN CLUSTERS

\[f(q) \] for binaries with \(P < 10 \text{ y} \)

For G-K-M primaries, 2 modes:
• \(0.1 < q < 0.7 \),
 With a “brown dwarf desert” \((q<0.1)\) vanishing for \(P > 2-3 \) years
• \(q > 0.8 \), with a peak around \(q=1 \) (“twins”). Vanishing when \(P \) increasing.

Halbwachs+ 03
Binary Formation Mechanisms: Constraints from the Companion Mass Ratio Distribution

Maddalena M. Reggiani1 and Michael R. Meyer1

Table 1: Sample Properties

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ref</th>
<th>Primary Type</th>
<th>No. Multiple Systems</th>
<th>Separation Range (AU)</th>
<th>q_{lim}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
<td>1</td>
<td>M</td>
<td>27</td>
<td>1-2400</td>
<td>0.2</td>
</tr>
<tr>
<td>Field</td>
<td>2</td>
<td>F/G</td>
<td>30</td>
<td>28-1590</td>
<td>0.1</td>
</tr>
<tr>
<td>ScoOB2</td>
<td>3</td>
<td>A/late-B</td>
<td>60</td>
<td>29-1612</td>
<td>0.05</td>
</tr>
<tr>
<td>Pleiades</td>
<td>4</td>
<td>F/G</td>
<td>22</td>
<td>11-910</td>
<td>0.2</td>
</tr>
<tr>
<td>α Persei</td>
<td>5</td>
<td>F/G</td>
<td>18</td>
<td>26-581</td>
<td>0.25</td>
</tr>
<tr>
<td>Chamaeleon I</td>
<td>6</td>
<td>G/Kb</td>
<td>13</td>
<td>20-800</td>
<td>0.1</td>
</tr>
<tr>
<td>Taurus</td>
<td>7</td>
<td>G/Kc</td>
<td>40</td>
<td>5-5000</td>
<td>0.1</td>
</tr>
</tbody>
</table>

a References: (1) Fischer & Marcy (1992), (2) Metchev & Hillenbrand (2009), (3) Kouwenhoven et al. (2005), (4) Bouvier et al. (1997), (5) Patience et al. (2002), (6) Lafrenière et al. (2008), (7) Kraus et al. (2011).

b The mass range is 0.55 and 2.2 M$_\odot$, comparable to MH09

c The mass range is 0.7 and 2.7 M$_\odot$, comparable to MH09

Stars are not taken from an IMF (capture scenario)

Could be flat
Another sample: Large proper motion SBs

129 SBs with \(P < 1250 \) d
\(K_{\text{min}} = 2.5 \) km/s
Primary mass estimated
Apply Öpik correction

distribution includes two populations, one with a high, asymmetric peak at \(q \sim 0.2 \) and another with a smaller peak at \(q \sim 0.8 \)

Goldberg, Mazeh & Latham 03
LARGE PROPER MOTION SBs

Halo subsample

Disc subsample

Fig. 6.—Mass-ratio distributions of the halo subsample (left) and of the disk subsample (right). See Fig. 3 for the meaning of the different line types.

Goldberg, Mazeh & Latham 03
Large proper motion SBs

Split according to mass

Fig. 7.—Same as Fig. 6, but for the subsample with low-mass primaries (left) and high-mass primaries (right)

Goldberg, Mazeh & Latham 03
SAMPLE OF SB2 (USING IR LINES)

- The peak around $q\sim0.3-0.5$ disappears as distribution is flat...

Mazeh+ 03

Perhaps, this should serve as a warning: do not overinterpret the data!
Effect of Sample size ($f(q)$ uniform)

$f(q) = \text{cst}; N = 100$

$f(q) = \text{cst}; N = 1000$
SINGLE PEAK SEEMS MORE ROBUST

N = 100

Mass ratio

0.5 1 0.5 1 0.5 1
3 Peaks

See also Brown 11, for application to exoplanets
A CATALOGUE OF 213 G-K GIANTS

Fig. 10. Distribution of $\log f(m)$ computed by the Monte Carlo technique using a giant mass $m_G = 1.5 \, M_\odot$ and $f(q) = 1$ (○) or $f(q) \propto q^{-1}$ (□), compared to the observed one (solid line).

Boffin, Cerf & Paulus 93
A MORE CONTROLLED SAMPLE: RED GIANTS IN OPEN CLUSTERS

156 SB1
Use turn-off mass as M_A
Clear excess of systems at $q \sim 0.2-0.3$
$<M_A> \sim 2.5$ M$_{\odot}$
A MORE CONTROLLED SAMPLE: RED GIANTS IN OPEN CLUSTERS

Checking that a uniform distribution does not do the trick
A MORE CONTROLLED SAMPLE: RED GIANTS IN OPEN CLUSTERS

Adding low-mass objects is better – but not perfect
Mass transfer by wind

Predictions of model:

Barium stars have longer period than normal giant

Anomalies should be correlated with orbital period

Data from Jorissen et al (1998):

Boffin & Jorissen 88
RED GIANTS IN OPEN CLUSTER

Mermilliod+ 07

Eccentricity

Log P (days)

27 October 2011 - Kobe, CPS
RED GIANTS IN OPEN CLUSTER

Mermilio + 07

Signature of post-mass transfer?
GAIA Satellite

- Launch in June 2013
- measure the positions of ~1 billion stars both in our Galaxy and other members of the Local Group, with an accuracy down to 20 μas
- perform spectral and photometric measurements of all objects
- derive space velocities of the Galaxy's constituent stars using the stellar distances and motions
- create a three-dimensional structural map of the Galaxy
What about GAIA?

- GAIA will provide us with a flurry of new SBs
- Observe for 5 years
- $\sim 10^6$ orbits could be derived, finally making it possible to have huge samples for statistical analysis
- The survey will be homogeneous, so the bias should be quantifiable
- Simplest: look only at eclipsing binaries ($i \sim 90$)
- But why limit ourselves?
GAIA (II)

- Problem:
 - RV accuracy degrades quickly with G and with spectral type
 - $\sigma_{RV} \sim$ a few km/s for relatively bright G-K star (single measurement)
 - $\sigma_{RV} \sim$ 10–20 km/s for A-F stars (single measurement)
Effect of K on derived $f(q)$

- $K_D = 2 \text{ km/s}$
- $K_D = 10 \text{ km/s}$
Effect of K

$K < 2 \text{ km/s}$

$K < 10 \text{ km/s}$

![Graphs showing the effect of K on different parameters](image-url)
EXOPLANETS MASS DISTRIBUTION

All RV systems from exoplanet.eu

Early October 2011

637 systems
All RV systems from exoplanet.eu
Early October 2011
637 systems
EXOPLANETS

All RV systems from exoplanet.eu
Early October 2011

637 systems

Functional fit:
2 narrow gaussians centred on
m \sim 0.6 \text{ Mjup}
m \sim 6 \text{ Mearth}
EXOPLANETS

Less than 25 systems (6 %) may be brown dwarfs

All RV systems from exoplanet.eu
Early October 2011

637 systems

2 gaussians centred on
m ~ 0.6 Mjup
M ~ 6 Mearth
EXOPLANETS

Kepler transiting planets

Observational bias
EXOPLANETS

P < 50 days
All systems (637)

Systems with $P<50$ d (293)
Kepler planets $P < 50$ days

![Histogram of the occurrence rate of stars hosting planets with orbital periods of less than 50 days in five mass ranges. Detected (green), candidate (orange), and missed (blue) planets are depicted separately. Missed planets statistically correct for planets that are detectable by measurements at 1 m s$^{-1}$ but were missed because of nonuniform sensitivity.](image_url)

Howard et al. 2010
Extrasolar planet population synthesis

Lin & Ida (2010); Alibert, Mordasini, Benz (2011)

Predict: Desert: 3–15 M_{Earth}

Predict: No Rise of Mass Fn. With smaller masses

Disagreement With Kepler

Distance [AU] Marcy et al. 2011
CONCLUSION

- $f(q)$ important – and $f(m_2)$ for exoplanets as well!
- There are some ways to retrieve it by statistical methods
- But be aware of the limitations and the rules of the game

- GAIA will revolutionise SB discoveries – even though it will also be limited in the binaries it can sample