Violent Universe Explored by Japanese X-ray Satellites

> Hideyo Kunieda Nagoya University

Asia Academic Seminar CPS 8th International School of Planetary Science September 30, 2011 at Awaji

Lecture Plan

September 30, 10:45-12:00

II. High energy phenomena
2. Supernova remnants (SNR)
3. Neutron stars and blackholes
4. Active Galactic Nuclei(AGN)
5. Cluster of galaxies and Cosmology

II-2 :Supernova remnants (SNR)

Supernova Remnants (SNR)

(1) Evolution of main sequence stars

 $M < 0.5 \text{ Msolar} \qquad H \rightarrow \text{He}$ $M < 3 \text{ Msolar } H \rightarrow \text{He} \rightarrow \text{C/O} ----- \text{White dwarf}$ $3 \text{ Msolar} < M < 8 \text{ Msolar } \text{C} \rightarrow \text{O} \rightarrow \text{Ne} \rightarrow \text{Mg}$ $Ty \text{ I SN} -----Scatter all mass}$ $8 \text{ Msolar} < M < 3 \text{ O} \text{ Msolar} \qquad Si \rightarrow \text{Fe/Ni}$ Ty II SN -----Neutron stars

3 0 Msolar < M -----Black holes

(2) Evolution of Supernovae

Gravitational **E** of collapsed star --> Neutrino (99%) --> Kinetic E (1 %)

Shock wave enhances density, reduces speed Kinetic **ε** ---> Thermal **ε**

Sweep-up surrounding gas --> Shell High density --> X-rays ($\propto T^{1/2} n^2$)

Effective cooling by X-rays when $T \sim 10^6 \text{ K}$

Cas-A (1680 AD)

Visible

 $5 \ge 10^7 \text{ K}$

Photograph courtesy NASA/ESA/Hubble Heritage Team

Record of Supernovae

Year(AD)	Constellation	Name of objects
185	Centaurus	G314.4-2.3
386	Sagittarius	G11.2-0.3
1006	Lupus	SN1006
1054	Taurus	Crab Nebula
1181	Cassiopeia	3C58
1572	Cassiopeia	Tycho
1604	Ophiuchus	Kepler
1680	Cassiopeia	Cas A
1987	LMC	1987A

SN1987A

Anglo-Austrian Observatory

Before After Visible

Half year later Ginga discovered X-rays from --> Projenitor hit by shock wave

Expanding Ring observed by Hubble

X-ray image by Chandra Jan. 2000

Cas A X-ray Spectra

Multi-waveband observations

X-ray observation by Suzaku

Furuzawa et al.

Expanding shell at 2000-3000km/s

Tycho SNR with Suzaku

Furuzawa,2009:ApJ...693L..61F

Expanding shell at 2000-3000km/s

Extend internal structure of progenitor

Furuzawa et al.

Hayato et al.,2010:ApJ...725..894H

Multi-waveband observations

Ishihara et al.2010:A&A...521L..61I

Infrared images by Akari

Multi-waveband observations

Schematic View of the shell region

(3) Products of Super novae

Hot plasmas --> Hot Inter-Stellar Medium(HISM) Nuclear synthesis --> Pollution of ISM

--> material for the next generation stars

--> Contraction of B --> Acceleration of e⁻

Acceleration of high energy particles \rightarrow Cosmic rays

--> Supply of **Energy** and **abundance** to ISM

Dense core (Neutron stars, Black holes)

II-3 : Neutron stars and blackholes

1. X-ray binaries

(1) Mass Accretion from Companion Stars

Figure 12. Artist's conception of Cyg X-1. Illustration of L. Cohen.

II-4 : Active Galactic Nuclei(AGN)

Active galactic nuclei (AGN)

 1011

 Bright nucleus > total radiation of stars

 Emission lines instead of absorption lines

 Image: Ima

Fig. 1.2. Examples of galaxy types. Left to right, top: M87 (E0), NGC147 (dwarf E5); centre, M31 (Sb), NGC1365 (SBb–note the prominent bar); bottom, NGC2997 (Sc) and NGC4321 [M100] (Sc). The photographs are from the Anglo Australian Telescope apart from NGC147 and M31 which are from the Hale Observatories.

Mass estimation of nuclei

Nuclear gas motion $v^2/r = GM/r^2$ v=500km/s, Radius: r=18pc $M > 10^9$ Msolar

Red shift <-- Reseeding

http://www.astro.isas.ac.jp/xjapan/asca/3/agn/

X-rays from AGN

James N, Reeves et al, 2007, Publ. Astron. Soc.Japan, 59, 301

Fabian et al, 1989, Mon. Not. R. astr. Soc, 238, 729

Tanaka, Y et al, 1995, Natur., 375, 659

Miniutti, H et al, 2007, Progress of Theoretical Physics Supplement, 169, 260

How small the inner most radius could be? How large red shift could be?

Rin could be as small as 3Rg If BH is rotating, Rin could be < 3Rg then red shift could be larger

Continuum level affects the red shift

Red shift to 5keV is sure--> but Rotating Kerr BH is not clear yet

Structure of the BH vicinity Determined by Suzaku

Galactic Center Region

Chandra X-ray Image of GC

Koyama et al., 2007, Publ. Astron. Soc. Japan, 59, 245

6.7 keV Line mapping

Hot Plasma

6.4 keV Line Mapping

Reflection Nebulae

Galactic Center Region

Chandra X-ray Image of GC

Bright X-ray Source at Galactic Center?

X-ray Front approaching to molecular clouds

Koyama et al., 2008, Publ. Astron. Soc. Japan, 60, 201

II-5 : Cluster of galaxies and Cosmology

R. Shibata et al., 2001, *ApJ*, **549**, 228

Ezawa et al.,1997, ApJ...490L..33E

Abundance Distribution

Concentration at cores Nucleus-synthesis Ty Ia / Ty II SNR Scatter of galactic gases Galactic wind, Ram pressure

Mass of C. G.

Lecture Plan

September 30, 9:00-10:15

I. Basic processes in High energy astronomy I-1: Why X-ray astronomy? I-2: Emission mechanisms I-3: Energy sources II. High energy phenomena II-1: Stellar X-ray emission

September 30, 10:45-12:00

II-2: Supernova remnants (SNR)II-3: Neutron stars and blackholesII-4: Active Galactic NucleiII-5: Cluster of galaxies and Cosmology

X-ray Telescope X-ray missions in 21st Century

References

- <u>http://www.u.phys.nagoya-u.ac.jp/r_e/r_e3_4.html</u>
- Furuzawa et al., 2009, Doppler-Broadened Iron X-Ray Lines From Tycho's Supernova Remnant : ApJ...693L..
- Hayato et al., 2010, Expansion Velocity of Ejecta in Tycho's Supernova Remnant Measured by Doppler Broadened X-ray Line Emission : ApJ...725..894H
- Ishihara et al., 2010, Origin of the dust emission from Tycho's SNR : A&A...521L..611
- http://www.astro.isas.ac.jp/xjapan/asca/3/agn/
- "James N, Reeves et al, 2007, Revealing the High Energy Emission from theObscyred seyfert Galaxy MCG-5-23-16 with Suzaku, Publ. Astron. Soc.Japan, 59, 301"
- Fabian et al, 1989, X-ray fluorescence from the inner disc in Cygnus:X-1, Mon. Not. R. astr. Soc, 238, 729
- Tanaka et al, 1995, Gravitationally redshifted emission implying an accretion disc and massive black hole in the active galaxy MCG-6-30-15, Natur., 375, 659
- Miniutti et al, 2007, The Long Suzaku Observation of MCG-6-30-15, Progress of Theoretical Physics Supplement, 169, 260
- Koyama et al., 2007: Iron and Nickel Line Diagnostic for the Garactic Center Diffuse emission, Publ. Astron. Soc. Japan, 59, 245
- Murakami et al, 2003, Reflected X-ray Emissions on Molecular Clouds -Evidence of the Past Actives of Sgr A*, Astron. Nachr, 324, 125
- Koyama et al., 2008: A time-Variable X-Ray Echo; Indication of past Flare of Garactic-Center Black Hole, Publ. Astron. Soc. Japan, 60, 201
- Shibata et al., 2001, Temperature Map of the Virgo Cluster of Galaxies Observed with ASCA: *ApJ*... **549...**228
- Ezawa et al., 1997, Discovery of a Large-Scale Abundance Gradient in the Cluster of Galaxies AWM 7 with ASCA: ApJ...490L..33E
- Lubin et al., 1996, The Baryon Fraction and Velocity--Temperature Relation in Galaxy Clusters : Models versus Observations : ApJ...460...10