Violent Universe Explored by Japanese X-ray Satellites

> Hideyo Kunieda Nagoya University

Asia Academic Seminar CPS 8th International School of Planetary Science September 30, 2011 at Awaji

Lecture Plan

September 30, 9:00-10:15

I. Basic processes in High energy astronomy I-1: Why X-ray astronomy? I-2: Emission mechanisms I-3: Energy sources II. High energy phenomena II-1: Stellar X-ray emission

September 30, 10:45-12:00

II-2: Supernova remnants (SNR)II-3: Neutron stars and blackholesII-4: Active Galactic NucleiII-5: Cluster of galaxies and Cosmology

I-1. Why X-ray astronomy?

1. Sunhttp://swc.nict.go.jp/sunspot/Photosphere : Black body radiation
 $T = 6430^{\circ} \ K \rightarrow \lambda_{peak} \frown 4500 \ A$ Wien's law $\lambda T = 2800 \ micron \ K$ Density $\frown 10^{14} \ atom/cc \ (10^{-6} \ g/cc)$

Corona : Thin thermal emission + lines $T = 10^6 \circ K \rightarrow \lambda_{peak} \sim 30 \text{ A (if BB)}$ Density $\sim 10^{6-8}$ atom/cc http://hinode.nao.ac.jp/latest/

Optical Image

X-ray Image by

http://hinode.nao.ac.jp/latest/

Virgo

Cluster

X-ray Image by

ASCA

Visible mass $\sim M$ X-ray image : Hot plasma $T \sim 10^{7-8}$ ° K Plasma mass $\sim 1-5$ M

Mass to bind hot gas in clusters **Dark matter** Mass ~ 5-20 M

Radiation and related physical processes

Radio $\lambda = 0.1 - 100 \text{ mm}$ Molecular emission Vibration, rotation Infrared $\lambda = 1-100$ micron Dust emission Low temp. stars Optical λ =4000-7000Å

FM Radio frequency 80.7 MHz λ =3x10¹⁰cm/8.07x10⁷ = 4 x10² cm

Black body radiation $37^{\circ}C \implies 310^{\circ} K$ ~ 9 micron

alA=4000-7000 AH Ly- α 1215 ÅMain sequence starsLy limit912 ÅT= 6430°K $\rightarrow \lambda_{peak} \sim 4500 A$ H Ba- α (H- α)6562 ÅAbsorption & emission lines from excited atoms

Radiation and related physical processes

Ultra-violet $\lambda = 100-4000 \text{ Å}$ Early type stars(<7000° Emission lines

X-rays $\lambda = 1-100$ Å Plasma temp. 10^{5-8} K Emission lines (transition between levels)

Gamma rays $\lambda < 1 \text{ Å}$ Nuclear transition High energy particles A Binding energy
(Outer most electron) H (13.6 eV), He (24.6 eV), Li (5.4eV), Be(9.3eV)

> Binding energy (Inner most electron) C(280eV), O(550eV) Ar(3.1keV), Fe(7.1keV)

Synchrotron rad. Compton rad.

Radiation mechanisms of X-rays Magnetic Field Sun, Stars **High energy** Nuclear **Electrons** Supernovae **Fusion** Energy Neutron stars Source **X-rays AX-rays** Light **Blackholes** Gravity **Hot Plasama Cluster galaxies** 0 🛪 Electrons Ion Optical X-rays X-ray IV IR Radio 100M 10,000 1M 100K

Narrow window
at Visible lightX-rays are observable
from out side atmosphere

X-ray Telescope

Japanese X-ray Satellites

1. Black body radiation

Thermometry of steel furnaces based on the radiation

 $E(v) dv = 2 Z(v)kT dv \qquad Z(v): lattice points in phase space$ (1) Long wave side : Rayleigh-Jeans distribution

$$4\pi L^{3}$$

$$Z(v) dv = -----v^{2} dv$$

$$C^{3}$$

$$E(v) dv = \frac{8\pi kT}{L^{3}} = ----v^{2} dv$$

$$C^{3}$$

When v --> small, it well represents observed spectra but when v is large, U will become infinity.

1. Black body radiation

(2) Short Wave side : Wien distribution

$$Z(v) d v = \frac{4\pi L^3}{C^3} v^2 \exp(-h v / kT) d v$$

$$C^3 = \frac{2 Z(v) hv d v}{C^3} = \frac{8\pi h}{V^3} \exp(-h v / kT) d v$$

$$L^3 = \frac{c^3}{c^3}$$

When h v /kT >>1, it well represents observed spectra but does not match with the data when h v /kT <<1

1. Black body radiation

(3) Interpolation : Planck distribution

 $8\pi h$ $U(v) = -----v^3 dv$ Planck distribution $c^3 exp(h v/kT) - 1$ When h v /kT <<1, exp(- h v /kT) =1 + h v /kT $8\pi kT$ U(v) d v = ----- v² d v Rayleigh-Jeans **c**³ When h v /kT >>1, exp(h v /kT) >>1 $8\pi kT$ $U(v) dv = ----v^{3} exp(-hv/kT) dv$ Wein **c**³

PLANCK-LAW RADIATION CURVES

1. Black body radiation Peak frequency : derivative of Planck's eq. = 0 $U(v) = \frac{8\pi h}{c^3} \frac{1}{\exp(h v / kT) - 1}$ Planck distribution **x**³ $f(x) = \frac{1}{e^x - 1}$ when x = hv/kT $\partial f = 3x^2(e^x-1)-x^3e^x$ = = 0 $\partial x \qquad (e^{x} - 1)^{2}$ $3(1-e^x) = x$ left term = 0(x=0), =1.8(x=1), =2.4(x=2), =3(x=\infty) x=2.812 hvmax=2.82 kT Wien's law $\lambda maxT = 2900(\mu m \cdot K)$

PLANCK-LAW RADIATION CURVES

2. Line emission and absorption

Emission from Fe atoms

2. Line emission and absorption

Absorption by Fe atom

If outer electrons are ionized

2. Line emission and absorption

Emission from hot plasmas

Ionization state

Electron collision/Photo ionization Free electrons Recombination Equilibrium

Lines from ionized ions

Binding energy increases after the removal of outer electronsFe XVII(16 electrons are removed)Fe Kα X-ray ~6.4 keVFe XVIII -XXV~6.7 keVFe XXVI~6.9 keV

Line energy>	Ionization state		
Line ratio of an element>			
	Tion, Te (Balance of ionization/recomb.)		
Line ratio>	Atomic abundance		

Emission from hot plasmas

Emission from hot plasmas

3. Bremsstrahlung

Dipole **d** Radiation into the unit solid angle Ω

$$\frac{\mathrm{dP}}{\mathrm{d\Omega}} = \frac{\mathbf{d}^2}{4\pi \mathrm{c}^3} \sin^2 \theta$$

$$\frac{dW}{dt} = \frac{e^2}{16\pi^2\epsilon_0 c} \int d\Omega (\mathbf{n}(t) \times (\mathbf{n}(t) \times \boldsymbol{\beta}(t)))^2$$

If θ is the angle between $\boldsymbol{\beta}(t)$ and \mathbf{n} ,

$$e^2 \qquad \cdot \mathbf{i} \qquad \cdot \mathbf{i}$$

When $\beta = v/c \rightarrow 1$ Isotropic in the rest frame \rightarrow Lorentz transformation \rightarrow Beaming

3. Bremsstrahlung

Lorentz transformation

x' = γ (x-vt) y' =y z' =z z=z' t' = γ (t-vx/c²) $t = \gamma (t' + vx' / c^2)$

Measured in the moving system Velocity u', direction θ ',

Parallel component to v is affected by the motion v $u_{\parallel}' + v$ u_{\perp}' $u_{\parallel} = \frac{u_{\parallel}' + v_{\parallel}}{1 + vu_{\parallel}} / c^2$ $u_{\perp} = \frac{u_{\perp}'}{\gamma (1 + vu_{\parallel}' / c^2)}$

In the moving system, light direction is θ is changed to θ

 $\sin \theta = \frac{\mathbf{u}}{\mathbf{c}} = \frac{\mathbf{c} \sin \theta'}{\mathbf{c} \mathbf{c} \mathbf{\gamma} (1 + \mathbf{v} \cos \theta / \mathbf{c})}$ Here, u'=c, u_{||} =c cos θ , u =c sin θ If $\theta = \pi/2$, sin $\theta = 1/\mathbf{\gamma}$

3. Bremsstrahlung

 $\frac{\mathrm{dW}}{\mathrm{d\omega}} = \frac{2\mathrm{e}^2}{3\pi\mathrm{c}^3} |\Delta \mathbf{V}|^2 \quad \omega\tau << 1 \quad \tau = \mathrm{b} / \mathrm{v}$

3. Bremsstrahlung

Thermal bremsstralung Ion density n_i electron density n_e

Integrate b from b_{min} to ∞

 $\frac{dW}{d\omega \, dVdt} = n_e n_i 2\pi v \int \frac{\infty \quad dW(b)}{b_{min} \quad d\omega} b \, db$ $= \frac{16e^6}{-3c^3m^2v} n_e n_i Z^2 \ln(\frac{b_{max}}{b_{min}})$ $= \frac{16\pi e^6}{-3\sqrt{3}c^3m^2v} n_e n_i Z^2 g_{ff}(v, \omega) \quad (eq 5.11)$ George B. Rybicki, Alan P. Lightman, 1979:

Radiative Processes in Astrophysics, Wiley-VC, 158

George B. Rybicki, Alan P. Lightman, 1979: Radiative Processes in Astrophysics, Wiley-VC, 160

Emission from hot plasmas

Thermal radiation from SNR

http://www.u.phys.nagoya-u.ac.jp/r_e/r_e3_4.html

4. Synchrotron radiation

 $U_B = B^2 / 8\pi$: Energy density of B

George B. Rybicki, Alan P. Lightman, 1979: Radiative Processes in Astrophysics, Wiley-VC, 169

4. Synchrotron radiation

If energy spectrum of electrons is power law, N(γ) d γ = C $_2 \gamma$ -P d γ

 $P_{tot}(\omega) \propto \omega^{-(p-1)/2} \int F(x) x^{(p-3)/2} dx$ (eq. 6. 22a)

George B. Rybicki, Alan P. Lightman, 1979: Radiative Processes in Astrophysics, Wiley-VC, 173-174

5. Compton scattering

$$\frac{d\sigma_{T}}{d\Omega} = \frac{1}{2} r_{o}^{2} (1 + \cos^{2}\theta)$$
$$\frac{8\pi}{\sigma_{T}} = \frac{1}{3} r_{o}^{2}$$

In relativistic cases, $\epsilon \qquad \epsilon \\ --=1 + -----(1 - \cos\theta) \\ \epsilon_1 \qquad mc^2$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{r_o}^2 \,\varepsilon_1^2}{2 \,\varepsilon^2} \left(\frac{\varepsilon}{\varepsilon_1} + \frac{\varepsilon_1}{\varepsilon_1} - \sin^2\theta \right)$$

eq(7.4)

George B. Rybicki, Alan P. Lightman, 1979: Radiative Processes in Astrophysics, Wiley-VC, 197

II-2: Emission mechanisms 5. Compton scattering Inverse If E_{el} is large (>> m_ec2), observer frame has to be referred to the incident photon

 \mathbf{F}

$$\varepsilon' = \varepsilon \gamma (1 - \beta \cos \theta)$$

$$\frac{\Box \Box_{1}}{dt} = c \sigma_{T} \gamma^{2} \int (1 - \beta \cos \theta)^{2} \varepsilon n d\varepsilon \qquad \varepsilon_{electron}$$

$$\varepsilon = h\nu$$

$$\varepsilon = h\nu$$

$$\theta_{-----\theta_{------}}$$

$$U_{PH} = \int \varepsilon n d\varepsilon$$

$$E_{electron}$$

$$U_{PH} = \int \varepsilon n d\varepsilon$$

$$E_{electron}$$

$$E_{electron}$$

$$E_{electron}$$

Radiation Processes

Line emissions

Thermal Bremsstrahlung -----> Blackbody radiation

 $\frac{dW}{dV dt} = \frac{2\pi kT}{3m} \frac{2^5\pi e^6}{2^5\pi e^6} = \frac{Z^2 n_e n_i g}{2^5\pi e^6}$ (eq. 5.15a)

Synchrotron

$$P = \frac{4}{3} \sigma_{Th} c\beta^2 \gamma^2 U_B \quad (eq. 6. 7b)$$

Inverse Compton

$$P = ----\sigma_{T} c \gamma^{2} \beta^{2} U_{PH}$$
George B. Rybicki, Alan P. Lightman, 1979:
Radiative Processes in Astrophysics, Wiley-VC,
161

II-2: Emission mechanisms of high energy photons

Synchrotron-self-Compton Model for a Blazer

II-2: Emission mechanisms of high energy photons

Non-thermal component of SNR

I-3: Energy sources of high energy phenomena

Energy release of X-ray sources

Sun	$L_{opt} \sim 10^{33} \text{ erg/s}$	Nuclear fusion
	$L_{X} \sim 10^{27} \text{ erg/s}$	
SN	$E \sim 10^{51} \text{ erg}$	Gravitational Energy
AGN	L~10 ⁴¹⁻⁴⁷ erg/sec	Gravitational Energy
Cluster	$E \sim 10^{60} erg$	Dynamical+G Energy
γ burst	$E \sim 10^{52} \text{ erg/sec}$	Hypernovae?

1. Nuclear energy

SUN

Energy release of the Sun

--> Black body radiation $kT=6430^{\circ}$ K, r = 600,000 km, $\sigma = 5.67 \times 10^{-5}$

 $L = 4\pi r^2 \sigma T^4 = 4.4 x 10^{33} erg/s$

 $t = \frac{3600 \text{ s/h x } 24 \text{ h/d x } 365 \text{ d/y x } 46 \text{ x } 10^8 \text{ y}}{= 1.45 \text{ x } 10^{17} \text{ sec}}$ (3.15 x 10⁷ sec/y)

 $E = L x t = 6 x 10^{50} erg$

1. Nuclear energy

CNO cycle He burning C O burning---> Fe

2. Gravitational energy

Sun

Neutron stars

Blackholes 1 M_{Solar}

 $E=GM^2/R$

 $\sim Mc^2$

Escape velocity At Rg,
$$v_{es} = c$$

 $v_{es}^2 = 2GM/R$ Then $Rg = 2GM/c^2$
 $= 3 (M/M_{solar}) km$

II. High energy phenomena II-1 : Stellar X-ray emission

Star forming region

ρ Oph Molecular Cloud

Optical (Digitized sky survey)

Radio (^{13}CO) (NANTEN telescope)

X-ray blinking of proto stars in SFR

(2) Solar X-rays

Main sequence stars

Core Temp. and Density --> Ignition of Nuclear reaction Photo-sphere: T ~ 6000° K Blackbody

Corona: $T \sim 10^{6-7}$ K --> several keV --> X-rays

Nuclear energy --> Convection/Rotation --> **B**

Solar magnetic field --> Extends into the atmosphere

Soft X-ray Movie of the Sun by Yohkoh

http://www.isas.jaxa.jp/home/solar/yohkoh/

References

- George B. Rybicki, Alan P. Lightman, 1979: Radiative Processes in Astrophysics, Wiley-VCH, 158,160-161,169,173-174,197
- John D. Kraus, 1986: Radio Astronomy, Cygnus-Quasar Books ,81
- Koyama et al, 2007: Discoveries of Diffuse Iron Line Sources from the Sgr B Region, Publ. Astron. Soc. Japan, 59, 221
- Koyama et al, 2007: Iron and Nickel Line Diagnostic for the Garactic Center Diffuse Emission, Publ. Astron. Soc. Japan, 59, 245
- Koyama, 2006: New X-ray view of the Galactic Center observed with Suzaku, Journal of Physics ; Conference Series, 54, 95
- Macomb, D, J, 1995: Multiwavelength Observatons of Markarian 421 During a TeV/X-Ray Flare The AstroPhysical Journal, 449,99

References

- Sun optical image http://swc.nict.go.jp/sunspot/
- Sun X-ray Image http://hinode.nao.ac.jp/latest/
- 名古屋大学Ux研@研究プロジェクト (Cassiopeia A) <u>http://www.u.phys.nagoya-u.ac.jp/r_e/r_e3_4.html</u>
- ・ ようこう

http://www.isas.jaxa.jp/home/solar/yohkoh/