
「Paraiso」project
for automated generation

of partial differential equations solvers
for parallel computers

Takayuki Muranush @nushio

Astrophisicist, Assistant professor at

The Hakubi Center, Kyoto University（2010-2015）

Chapter 1.
An Introduction to a Problem

we (numerical astronomers) have.

Acceleration

is

Parallelization

1 node

メモリ: (4GBx6) + (8GBx3
+ 2GBx3)
CPU：Westmere EP x2
GPU：Tesla 2050
(515Gflops + 3GB) x3
通信：Infiniband QDR
10GB/s
ローカルディスク：SSD x2
RAID0 (460MB/s read)

2.2×1015flops

2.4?×1014flops

1.3×1013 Byte

7.6×1013 Byte

7.0? ×1015 Byte

Disks

1.4×1013 Byte/s

6.1×1014 Byte/s

3.4×1013 Byte/s

6.6×1011 Byte/s

1×1014 Byte/s

GPU
CPU

GPUの
メモリ
ホストの

メモリ

SSD

DISK

Communications

L1
L2
L3

shared L1
L2

TSUBAME 2.0 Memory Hierarchy

• Thanks to the architects, today we have access
to huge amount of memory and compute
capability.

• That doesn’t come for free to the
programmers. anymore.

90’832’896 CUDA Thread in Parallel

L1 Cache

L2 Cache

VRAM

HOST MEMORY

SSD

Hard Disk

Register

Shared Memory

4,386,816 floating operations in Parallel

What
kind of computations

I’d like to do
with such hardwares?

many categories of problems

Target Problem of Paraiso:
Partial Differential Equations,

Explicit Solvers, on Uniform Mesh

General Relativity

Magneto-Hydrodynamics
Hydrodynamics

Radiative Transfer
(Relativistic)

• Hyperbolic PDEs that appers in astrophysics
• combinations of these equations
• combinations with chemistry etc..

Partial Differential Equations,
Explicit Solvers, on Uniform Mesh

From computational point of view:
• They are d-Dimensional, real-number cell

automata.
• The state of each cell is a tuple of real numbers.
• The state of the cell at generation (n+1) is defiend

as function of the states of its neighbor cells at
generation (n).

n-th generation n+1 -th generation

What kind of equations?

• For example, the General Theory of Relativity
which only two man on the earth truly
understood, is as follows

it’s easy, isn’t it?

What kind of algorithms?

• A description of BSSN
algorithm, to solve the
Einstein’s equations

What kind of code we use?

＊BSSN algorithm
Fortran＋OpenMP

＊My MHD Solver
in CUDA+MPI

What’s wrong?

• what makes our programs this long?

Programming is to choose

algebraic concepts

physical equations

time integration
methods

space interpolation
methods

data structures

optimization techniques

and hardware designs

tensors, its symmetry…

HD, MHD, GR, …

1st order, 2nd order, 4th
order, more…

1st, 2nd, 3rd, TVD, Shock…

SoA, AoS, distribution,
communication timing…

CPU, GPU, what next, …

To make things worse...

• We write more than one program.

• We make trial & error in search for better
programs

• Suddenly the architecture changes and we are
forced to use SSE, CUDA, AVX ...

• We need to insert communications correctly

 To make a single point of change, we have to
grep all over the codes

Modern Parallel Programming is like this

The amount of programs we write in our life is
the product of the factors mentioned

Specify each of the sufficient knowledge modules,
and programs like above are automatically
generated

I want it like this

What a code generator aims for

• Generally you write Nf×Nmath×Neq×Nint×Nhw…
lines of code

• You find a bug / improvement and want Neq = Neq + 1; then
you need to re-write Nf×Nmath×1×Nint×Nhw… lines

• With code generator you only have to write

 Nf + Nmath + Neq + Nint + Nhw… lines

• You want Neq = Neq + 1; then just add 1 line

• You can concentrate on physics

Can’t you do that in existing language

•possibly

• we can define vectors and tensors as classes

• we can overload operators

• we have templates

• we have accumulated sophisticated
techniques such as expression templates

as a result ...

I want a language that
is modular

(easy to reuse components)
transplantable

fast
beautiful

• hopeless
or is it...?

if you limit the problem domain

Paraiso
Input: Discretized Algorithms for solving Partial

Differential Equations, in mathematical notations

Output: Implementations on Distributed, Manycore
Machines.

PARallel Automated Integration Scheme Organizer

The overall design of
Chapter 2.

8 building blocks of PDE solvers

Imm
 load constant value
Load （graph starts here）
 read from named array
Store （graph ends here）
 write to named array
Reduce
 array to scalar value
Broadcast
 scalar to array
Shift
 copy each cell to neighbourhood
LoadIndex & LoadSize
 get coordinate of each cell
 get array size
Arith
 various mathematical operations

Basic Equations

Discretized Form

OM Dataflow
Graph

Native Code

Executable Files

a_i_j <- … …

q_i <- dt *

 a_i_j * f_j

ld r2, g2[0,0,0]

ld r1, g2[0,0,1]

add r1,r2,r3

st r3,g1

*q=cudaMalloc(…);

__shared__ a,b;

a=q[idx];

b=q[idx+1];

p[idx]=a+b;

Manually

OM Builder

OM Compiler

Native Compiler

Orthotope Machine Code

result

Discrete PDE Language

サーベイしたところ出てきた
先行研究

かなり似ている・・・

基礎方程式

離散化形

VVM上のコード

実マシン上のコード

実マシン上の実行
ファイル

さしあたり人手

自動

自動

既存コンパイラ

DEQSOLの末路・・・

Discretized PDE Language

• Describe your
numerical algorithm
using natural notations
e.g. tensor notations,
difference operators.

• Translates to Orthotope
Machine

Algorithm notation

Orthotope Machine
• A Real number cellular automata

• A virtual machine with multidimensional array
vector register of infinite size

• arithmetic operations work in parallel on each
mesh, loads from neighbour cells,

 No intention of buiding a
real hardware:

a thought object to
construct a dataflow graph

Orthotope Machine Compiler
• convert dataflow graph

to real codes

• Divide OM registers
onto distributed
memories

• Generate
Communication codes

• The code generator has wide
choice on data layout,
granularity of communication,
computation

Orthotope
Machine Code

Native Codes

OM Compiler

Basic Equations

Discretized Form

OM Dataflow
Graph

Native Code

Executable Files

a_i_j <- … …

q_i <- dt *

 a_i_j * f_j

ld r2, g2[0,0,0]

ld r1, g2[0,0,1]

add r1,r2,r3

st r3,g1

*q=cudaMalloc(…);

__shared__ a,b;

a=q[idx];

b=q[idx+1];

p[idx]=a+b;

Manually

OM Builder

OM Compiler

Native Compiler

Orthotope Machine Code

result

Discrete PDE Language

Chapter 3.

More Details on Orthotope Machine

Orthotope Machine

Three Type parameters
OM components have

Type Constructor for
The dimension of the Orthotope Machine

Type of the Array Index

Type of the Annotation you can apply at graph node

bipartile graph consisting of
value nodes and inst nodes

8 building blocks of PDE solvers

Imm
 load constant value
Load （graph starts here）
 read from named array
Store （graph ends here）
 write to named array
Reduce
 array to scalar value
Broadcast
 scalar to array
Shift
 copy each cell to neighbourhood
LoadIndex & LoadSize
 get coordinate of each cell
 get array size
Arith
 various mathematical operations

Mul

Add

Shift(-1,0)

Reduce(Min)

Broadcast

1
4

7

2
5

8

3
6

9

1
4

7

2
5

8

3
6

9

4
10

16

3
9

15

5
11

17

12
30

48

9
27

45

15
33

51

3
3

3

3
3

3

3
3

3

3

NValue NInst

global value
（scalar value）

local value（Array）

local value（Array）

Load(“hoge”)

Store(“hoge”)

DynValue = Array (data container)
with realm and element type information

Local Realm = Array
Global Realm = Scalar data

Type-level representation
of Array

Value : type-level
DynValue : value-level

• User interface is in Type-level

• The type-checker helps user

• and assures type-consistency for the backend

• Dataflow graph under cover is Value-level

• can handle the graph in one type.

Value TLocal Float
-> Value TGlobal Int
-> Value Tlocal Float

Value TLocal Float

Value TGlobal Int

DynValue
-> DynValue
-> DynValue

DynValue

DynValue

User space
Internal
Dataflow
Graph

Basic Equations

Discretized Form

OM Dataflow
Graph

Native Code

Executable Files

a_i_j <- … …

q_i <- dt *

 a_i_j * f_j

ld r2, g2[0,0,0]

ld r1, g2[0,0,1]

add r1,r2,r3

st r3,g1

*q=cudaMalloc(…);

__shared__ a,b;

a=q[idx];

b=q[idx+1];

p[idx]=a+b;

Manually

OM Builder

OM Compiler

Native Compiler

Orthotope Machine Code

result

Discrete PDE Language

Chapter 4.

Builder Monads
constructs dataflow graph

the interface has type-level info on Realm and Type
but internal representations are value-level on Realm and Type

a helper function to define
binary operators for Builder Monad

Builder monad being an Additive
Builder monad being a Ring

• programing language Paraiso lacks
frontend (lexer, parser, AST
analyzer ...)

• Instead, Paraiso components are
first-class objects of a widely-used
language (Haskell)
(the (ultimate (source (of (programmability)))))

Example : Implement Hydro Solver

An HLLC Riemann-solver
in Builder Monad

It looks like usual mathematics, but every terms appear here
are Builder Monads, and the expressions are as themselves code
generators for Orthotope Machine.

sample
 hydrodynamics solver in Paraiso

Basic Equations

Discretized Form

OM Dataflow
Graph

Native Code

Executable Files

a_i_j <- … …

q_i <- dt *

 a_i_j * f_j

ld r2, g2[0,0,0]

ld r1, g2[0,0,1]

add r1,r2,r3

st r3,g1

*q=cudaMalloc(…);

__shared__ a,b;

a=q[idx];

b=q[idx+1];

p[idx]=a+b;

Manually

OM Builder

OM Compiler

Native Compiler

Orthotope Machine Code

result

Discrete PDE Language

Chapter 5.

old code generator...

• not so productive

OM Dataflow
Graph

Native Code

directly

 runBinder graph0 n0 binder = unlines $ header ++ [bindStr] ++ footer
 where
 (header,footer) = case context state of
 CtxGlobal -> ([],[])
 CtxLocal loopIndex ->
 ([loop (symbol Cpp loopIndex) ++ " {"], ["}"])
 loop i =
 "for (int " ++ i ++ " = 0 ; "
 ++ i ++ " < " ++ symbol Cpp sizeName ++ "() ; "
 ++ "++" ++ i ++ ")"

 code generator ver. 2
OM Dataflow

Graph

Native Code

OMTrans
Optimization :: OM -> OM

Analysis = add annotation

Plan = decisions made upon

• how much memory to allocate

• which part of calculation to
take place in same subroutine

Claris

• a C++ -like syntax tree with
CUDA extension.

Plan

PlanTrans

Claris

ClarisTrans

Annotated and
Optimized OM

Optimization/Analysis

Annotation
• Allocation, Ballon, Boundary, Comment,

Dependency

-- | a type that represents valid region of computation.
newtype Valid g = Valid [Interval (NearBoundary g)]
-- | the displacement around either side of the boundary.
data NearBoundary a
 = NegaInfinity | LowerBoundary a
 | UpperBoundary a | PosiInfinity
 deriving (Eq, Ord, Show, Typeable)

data Allocation
 = Existing -- ^ This entity is already allocated as a static variable.
 | Manifest -- ^ Allocate additional memory for this entity.
 | Delayed -- ^ Do not allocate, re-compute it whenever if needed.
 deriving (Eq, Show, Typeable)

Analysis

• decide allocation

• boundary analysis

• dependency analysis and write grouping

optimize level = case level of
 O0 -> gmap identity . writeGrouping . gmap boundaryAnalysis .
gmap decideAllocation
 _ -> optimize O0

Allocation

• some of the dataflow
graph nodes are
marked ‘Manifest.’

• Manifest nodes are
stored in memory.

• Delayed nodes are re-
computed as needed.

data Allocation
 = Existing -- ^ This entity is already allocated as a static variable.
 | Manifest -- ^ Allocate additional memory for this entity.
 | Delayed -- ^ Do not allocate, re-compute it whenever if needed.
 deriving (Eq, Show, Typeable)

• Less computation

for(;;){

 f[i] = calc_f(a[i], a[i+1]);

}

for (;;){

 b[i] += f[i] – f[i-1];

}

• Less storage
consumption & access
for(;;){

 f0 = calc_f(a[i-1], a[i]);

 f1 = calc_f(a[i], a[i+1]);

 b[i] += f1 – f0;

}

a

f

b

a

f

b

Valid Boundary Analysis

• Shift operations create undefined regions in value.

• Boundary analysis trace this to find out valid regions for
every node in the graph.

• How many additional mesh we need to obtain valid
answers for desired region.

• To generate boundary-region communications.

Add

Shift(-1,0)

1
4

7

2
5

8

3
6

9

nan
nan

nan

2
5

8

3
6

9

nan
nan

nan

3
9

15

5
11

17

NValue NInst

write grouping
Kernel

• a user-defined API of the generated class

Subkernel

• a set of calculation executed in a loop

• = Fortran subroutine

• = CUDA __global__ kernel

 void Life::proceed () {
 Life_sub_2(static_2_cell, manifest_1_67);
 Life_sub_3(static_1_generation, manifest_1_67, manifest_1_69,
manifest_1_74);
 (static_0_population) = (manifest_1_69);
 (static_1_generation) = (manifest_1_74);
 (static_2_cell) = (manifest_1_67);
}

a Kernel

write grouping
= a Kernel -> subkernels

• all node written by one
subkernel must have the
same valid region

• nodes written by one
subkernel must not depend
on each other

• greedy

a Kernel
Existing nodes

a Kernel
Existing nodes

write group 0

(・A・) dependency

(・A・) not dependent but different boundary

a Kernel
Existing nodes

subkernel 0

a Kernel
Existing nodes

subkernel 0

write group 1

a Kernel
Existing nodes

subkernel 0

subkernel 1

a Kernel
Existing nodes

subkernel 0

subkernel 1

write group 2

a Kernel
Existing nodes

subkernel 0

subkernel 1

subkernel 2

Diffusion Equation

• an example of code manipulation

Diffusion Equation Example
Annotation size of .cpp file number of

subkernels
memory
consumption

no annotation 1019 lines 4 5 x N

Manifest 301 lines 6 9 x N

homework
「内職」

all Paraiso-generated code
become OpenMP Compatible

in one line!

ｘ8 faster!
cpu consumption

