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Since 1959 the GFD program has promoted an exchange of ideas among researchers in the many
distinct fields that share a common interest in the nonlinear dynamics of fluid flows in oceanography,
meteorology, geophysics, astrophysics, applied mathematics, engineering and physics. Each year, the
program is organized around a ten-week course of study and research for a small group of
competitively selected graduate-student fellows. The overall philosophy is to bring together researchers
from a variety of backgrounds to provide a vigorous discussion of concepts that span different
disciplines, and thereby to create an intense research experience. For the student fellows, the
centerpiece of the program is a research project, pursued under the supervision of the staff. At the end
of the program, each fellow presents a lecture and a written report for the GFD proceedings volume.
Over its history, the GFD Program has produced numerous alumni, many of whom are prominent
scientists at universities throughout the world. The interdisciplinary atmosphere of the Program is the
ideal place for young scientists to learn the habits of broad inquiry, of speaking to others with very
different backgrounds and viewpoints, and of seeking answers in unfamiliar places.

The Program commences with two weeks of Principal Lectures focusing on a particular theme in GFD.
For 2010, the lectures will be entitled "Swirling and Swimming in Turbulence", and be delivered by
Glenn Flierl (MIT), Antonello Provenzale (CNR; Ttaly) and Jean-Luc Thiffeault (U. Wisconsin). Lectures
by staft and visitors will follow daily on a wide range of GFD and related topics.
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Lecturers

Jean-Luc Thiffeault,
University of
Wisconsin, Madison

+ Neil
Balmforth,
University of

.

Glenn Flierl, MIT

Antonello Provenzale,
Istituto di Scienze
Dell'Atmosfera




Lecturers

Lecture 1: Stirring and Mixing (Jean-Luc Thiffeault)

Lecture 2 : Introduction to Biological models (Glenn Flierl)

Lecture 3 : Effective Diffusivity and Swimming Organisms (Jean-Luc Thiffeault)
Lecture 4 : Local Stretching Theories (Jean-Luc Thiffeault)

Lecture 5 : Social Behaviour, Mixing, and the Evolution of Schooling (Glenn Flierl)

Lecture 6 : Mixing in the Presence of Sources and Sinks (Jean-Luc Thiffeault)
Lecture 7 : Examples at the Mesoscale (Antonello Provenzale)

Lecture 8: Dynamics of Heavy Impurities with Finite Size (Antonello Provenzale)

Lecture 9: Plankton Sinking and the Role of Turbulence (Antonello Provenzale)

Lecture 10: Evolutionary Models: Movement and Mixing in Trait and Physical
Space Glenn Flierl)



Lecturer notes
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Figure 12: Representation of schooling.
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Dynamics of heavy impurities with finite size
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Beer, beer, ..., beer, vodka, vodka, wine, cocktail
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Softball

George Veronis,
Yale University
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Japanese Party
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Trajectories of a treadmilling swimmer

Can it escape from its image?

Kiori Obuse (RIMS, Kyoto University)
Supervised by
Jean-Luc Thiffeault (University of Wisconsin)



Microorganism

Bacillus

Chlamydomonas
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cell membrane
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©1996 Encyclopaedia Britannica, Inc.

http://www.damtp.cam.ac.uk/user/
gold/movies.html

~ http://blackmonsbacillus.pbworks.com/
http //en W|k|ped|a org/wiki/Chlamydomonas

http//\A;;N.%reewebs.com/jennaIb03/
Escherichia coli

Tetrahymena

http://ja.wikipedia org/wiki/%E5%A4%A7%E8%85%BS%E8%8F8C http://www.marlerblog.com/tags/e-coli/

http://en.wikipedia.org/wiki/Tetrahymena



Microorganism and the Stokes flow

cilia or flagella small speec
o ® (=O(10%) pm/s)
Small —
length scale /
(1-200 um )

Low Reynolds number
(= 0(10%), ex. Escherichia coli: O(107) )
— viscous effect becomes dominant




Treadmilling in a free space

Nutrition

http://gizmodo.com/338598/fit-fur-life-doggy-treadmill-walks-that-mutt-so-you-wont-have-to



Microorganisms near a boundary

E. Coli swimming in circles above

a flat glass surface, (Lauga et al. 2006)
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Accumulation of E. Coli near boundaries
(measurement and force dipole
singularity model), (Berke et al. 2008)

“waltzing” motion of pair of Volvox,
(Drescher et al. 2009)

density-matched fluid. (b) The cell mixture is deposited between gy (color online). Waltzing of V. carteri. (a) Top view
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Preceding studies: bouncing above a no-slip wall

L7 T

Trajectory of the two-sphere swimmer near wall

N
, (Or and Murray, 2009)
Two-rotating-sphere model
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Trajectory of the swimmer

Rotating two cylinders to generate (Zhang et al. , 2010)
macroscale robotic prototype swimming
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Stokeslet, stresslet, rotelet ...

Stokes equation| V-0 =Vp-nAu =0,
u(x)=u”(x)=~f (0(§)-n)| G(x-E)

At x> [S

O . Stress tensor

1S(&), G : Dyadic Green’s function

1 1
in & about §=0 Gz-j(x)=;5,-j+—3xix.

7 J

Ambient Symmetric part Asymmetric part
flow field: U ” Stokeslet Stresslet (force- rotlet
(point force) free, (point torque)
torque-free) - o
\ ] / \
U , \ | | ~ \
& oo ool
/ B \ \ /
Rigid particle ~—



Preceding studies(singularity model):
Near an infinite no-slip wall (Crowdy and Or, 2010)
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A /9 Simplification to the synchronised
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Preceding studies(singularity model):

Near an infinite no-slip wall (Crowdy and Or, 2010)

e=0
| A point swimmer with
y(0)=1 and different values of 6(0)

A swimmer with «
e=0.2 for 6(0)=—m/4, y(0)=
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Preceding studies(singularity model):
Near an infinite no-slip wall with a gap (Crowdy and Ophir, 2010)
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Project: Near an half-infinite no-slip wall ??

y
A
(N
L\ (Xd, Vd
\\u.—f( ’ y )
<>
3
> X
No-slip wall of 0

infinitesimal thickness

tangential velocity profile: U(o.t) = 2V sin (2(¢ — 6))
V/ :const., sets the time scale for the treadmilling action by VV = ¢—1



Biharmonic equation and Goursat functions

Stokes equation in a complex plane (2 = r+wy):

CoVx .
Vp=nAu, V-u=0 == A2y = (. (Biharmonic equation )

general solution for i :

Im[Zf(2) + g(2)].

f(2) and ¢g(2):Goursat functions (analytic functions )

complex velocity field :

Uy + 1y = —f(2)+2f(2) + g (2)




Singularity model for 2D Stokes flow

Stokeslet |at z4. (1 € C)

f(2) = plog(z — z4) + analytic function,

J(z) = —T/_ d_d — 1 log(z — z4) + analytic function

stresslet |at z4 (e C)

. 1 , _
f(2) / + analytic function,
z— 24

Jd(z) = B ’l_l d_d)2 + analytic function

rotlet | at z4 if c € C ( source/sink ifc € R )

g(2) = clog(z — 24)



Treadmilling swimmer and a stresslet

Seek solutions for Goursat functions of the form;

. 2
2) = O((z — 2
-EFOED o

stlesslet of strength g

A0\ 2:“"62 H=d O
g(2) = (2 — :’d)g (2 — 24)? +.+ “d)

> 4

/

No rotlet: Torque-free

{ quadrupole

No Stokeslet: Force-free
of strength 2¢? /4

Boundary condition on the wall:
Uy +iuy, = —f(2) +2f'(2) +¢'(2) = 0.




Image of the swimmer

Goursat functions

ﬂjsz”+m+ﬁ0—w+0“ 2a)?).
()= 2 K)o - )
g (2) = ; ( “
J ( _ 3(‘1>3 (* — ‘*d) 70 1
Im(z)=y - N
/ \\ t Where should the
image be placed ?
2 . g

No-inE wall of

infinitesimal thickness

0

> Re(z)=x



Conformal mapping (change of variables)

¢ = C on the wall
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F(¢) and G(Q)

Assume F'(¢) to have the form (image system method)

: 0
FO)=—2_4+_ 8 ¢ | D_)+%‘

(=G (-0 (-Q)° (-G

G/(C) is determined by the boundary condition on the wall :

—f(2) + 21 (2) +¢'(2) = 0.

T 11 — 1
= G(Q) =T() ~2(2) = F(Q) - 752 F'(Q) = F(€) = 5¢F'(C).
a 5 C D
G)=T—==+ 5+
L T A TR A (o)
—lC —A N —3B N —2C N —D
27 €= (¢-q@)' (-Q)’ (-




F(¢), G(C), f(2), and 9(%)

necessary boundary condition on the treadmiller’s body :
Near Zd , f(2(C)) and 7' (2(€)) have to have singularities written as

‘ (L ,
f(z) =|—— 1 fo+ fi(z — za) + O((z — za)?),
L T .,(l)
2/1€” Ze
g'(2) = |+ 24 g0+ O((2 - 2a))
(3 — Zd ) |( Z = 3(1)

|

1 1
fl . 15 L .11
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Governing equations

dz, . .
4 = Tq 1+ 1Yq =velocity at © = Z4 induced by an image
dt .
(regular part of the velocity
Uy +iuy = —f(2) +2f(2) + ¢'(2)
at = — :‘(l)
([Z?[ . v S
| - = —Jfo+ zaf1 + 90,
dt
d 1 . . : :
o5 = A vorticity at © = Z4 induced by an image
0} . . v 'y ~ ~
(regular part of the vorticityw=—4 Im[f (z)] at = = 24 )

db

2 _TmorE
o Im |2 f1].




Example of the velocity field: %z and u,

1 24 =—2+2i,
110 =57/4,

le=1.




Initial conditions and parameters

T 20
7Y 00
‘ Xdo + 1Ydo
<>

-20 0 1 20

>~

> X

Time integration: ode45 solver,
dx =0.5, dy =0.5, d®o = /100, Maximum time: tmax = 1500,
e=1, p=exp(2i0(t))



Examples of trajectories
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Examples of the trajectories: Escaping from the wall

Initial condition: (x, y, theta) = (0, 2,1.5708 [rad])

b

Initial condition: (x, v, theta) = (-10, 10,1.1781 [rad])




Examples of the trajectories: Escaping from the wall

Initial condition: (x, y, theta) = (5, 5,0.94248 [rad])
10 I I I I I I T T T T

5t

-2 0 2 10 15 20 29 30 39 40 45 a0
=

_-‘-‘--‘-—-‘_‘-\——_

et

Initial condition: (X, y, theta) = (1.5, 0,1.2566 [rad])
1 I I I I I




Examples of the trajectories: Being above the wall

Initial condition: (x, y, theta) = (5, 5,0.62832 [rad])

10

Initial condition: (x, y, theta) = (5, 0,3.0788 [rad])
200 T T T T T T T T T T

150

100

a0

0

-500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0 -20 -15 -10 -5 0 ] 10
= bt

Initial condition: (x, y, theta) = (0, 2,1.2566 [rad)]) Initial condition: (x, y, theta) = (-10, 10,1.131 [rad])

15 15
101 7] 1
=
5.— -
—\_/W
U -
20 15 10 -3 0 ) 10 0 1

-20 -15 -10 -9 0 ]



Examples of the trajectories: Going beneath the wall

Initial condition: (x, y, theta) = (5, 0,3.2044 [rad])

0
-a0
>

-100

-150

-200 1 1 1 1 1 1 1 1 1 1
-500 -450 -400 -350 -300 -250 -200 -150 -100/ -50 0
P
INimal conaron: |X, ¥, tnetaj = |d, V,3.<u44 |rgaj)

3 -/




Examples of the trajectories: Crashing into the wall

Initial condition: (x, y, theta) = (-15, 10,2.5133 [rad])

15 Initial condition: (x, y, theta) = (-10, 10,1.1624 [rad])
15 T T T T T T T
10 @ 7 10F
st i st
D 1
0 ) ) ) ! i 20 -15 10 -5 0 5 10 15 20
-20 -15 -10 -5 0 5 10
=
Initial condition: (x, y, theta) = (-1, 1.5,1.7279 [rad)]) .. ..
2 ; : : : : : : Initial condition: (x, vy, theta) = (10, 10,3.7699 [rad])
15 I I 1 I 1 I I I 1 I
151 ]
A _
= 05
0
= 2
05
WL




The position at a sufficiently large time




From an initial point xdo > 0, ydo > 0

Initial position (x, y) = (20,10) Initial position (x, y) = (2,2)

-20



From an initial point xdo < 0, ydo > 1

Initial position (%, y) = (-20,5) Initial position (x, y) = (-1,2)

Im(z)
A
+10
21
. ______________________________________ T T > Re(z)
-20 0 1 20




From different initial points

(=20, 20) (=15, 20) (<10, 20) , . (10, 20) , (20, 20)

(=10, 15)

(=20, 15)

(10, 15)

(=20, 10) . (=10, 10)



From different initial points: Several rules

DB

-20



Escaping probability P, for each initial point
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(x0, y0, theta0) = (-10, 10,2.3562 [rad])

Trajectory of a swimmer

a0 T

40

or

2o

101

Temporal variation of the speed: Escaping from the wall

t

[ Speed of a swimmer 7"
-0 0 1I0 zln 310 410 slo aln ?lo 810 slo 1_00 1 --‘;1'3
0 f
X
?10
1@2;
310
y-position of a swimmer
10 ]
1} 1 2 3 4 5
10 10 10 10 10 10



Conclusions

= Treadmilling swimmer feels the presence of the wall
— > escaping probability < 1

* The speed of a swimmer slows down as the swimmer goes
further from the wall since the image should remain on the wall

Further works

??
- half a wall ~ size of the swimmer << width of the gap

Y

A

The original problem

"Near a corner

v
X
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Appendixes



Social Behavior, Mixing, and the Evolution of Schooling —— Glenn Flierl

Lecturer note 1

Dynamics of swimming organism ( position X , velocityU ):

[ dX; = Usdt.

dU; = _’_(Ui — U; — ‘;)(]7‘ + .i,']-(lU'j.

Water  Preferred Random
velocity swimming acceleration

velocity

- taxis (describes a large-scale preferred
velocity that the group tends to. ):
V depends on gradient of cue field VC'(x, 1)

cue C'(x,t) may be

environmental (food, light, depth, etc.) or social
(positions of neighbors, etc.).

Here, we define taxis as a preference for
moving up the gradient of the cue field,

V = ('\v(—'(x)




Lecturer note 1

Social Behavior, Mixing, and the Evolution of Schooling —— CGlenn Flierl
* kinesis (describes an individual’s tendency to move
randomly): ¥z F
;3 depends on the cue field. 3 = 3(C). y £ p
AL
&
g ofefos
PRI S
y PPp ¥ o
-schooling (describes the behavior of the organisms p ¥

that tend to swim similarly to their neighbours.):

V depends on neighbor’sU : V = V(U,eighbors )-
The preferred direction of the swimming organisms
results from a combination of attraction and alignment & ¥
tendencies, and so schooling can be represented as 7 "a‘ﬂ
' AL

o 7 o te v;faﬂ
V =WV1/[Vy], ¥ £ qﬂ
Vi=a) (X —X)w(X - Z U'n(X' - X|). p $¥w55

= vg ey



Singularities in Goursat functions

Example:|Stokeslet]| at z,.

strength of the singularity

v

Assume J (2) of the form f(z) = plog(z — zq). (,“ € C )

Then the complex velocity field is

. Lz _
Uy + 1y = —plog(z — zq) + Tl — + 7 (%)
Z —Zd
2z — zg L2 e
= —plog(z — zq) + (T T) + T'[ — + g'(.:)
o T ,.,d L T _.,d

Insist that the velocity filed should be both
single-valued and, at least, logarithmically singular
WZd
g (z.t) = — — 1 log(z — zq).

= =
~ — ~d

g(2) should have concomitant singularities to those in f(z), but not but not
conversely ( g(z) can have singularities which is independent of those  f(2)

of ).



necessary boundary condition
on the treadmiller’s bod

flzt) = A_[i + fo+ fi(z — 2q(t)) + - -~
z — zq(t)

1 | r\ dz
q(z.t) = + . — + ... - ds
L P 1) R e ) 2

On the surface of the treadmilling organism, where |z

— 24| =€,
D) . .. -
e dz T A dz complex unit
[ S = = ds ¢ ' ds ® tangent to the boundary.
: dz
Ugtitly =  Zq(t)+iye(t)+[eQ+ U(o,0(t))] — 7
( S

C—p W= —i€C, a = jZq, b= pe — ice> = 2pe (c(t)

= —iV exp(—2i 0(1)) )
Near 2d , f(2(¢)) and 9'(2(C)) have to have singularities written as

(L
f(2) =|——1 fo+ f1(z — za) + O((2 — 2a)?),
L T .,(l)
216 Ze
g'(2) = [ o+ 4 g0+ O((2 — 2q))
(2 — zq) |( 2 — 24)2




Goursat functions f(2), and 9(2)

fo = po ?Zﬂ N (23 7 — 2732 — 3?2) In
43‘(1 4 ,,1/2 --1/2 3.,—3/2 9'1/2 --51/2 2“-"_2
Z; T 24 24 8 2y T 24 24
_ (—QZd:d — 232 + 3?2) 1L
8 (:(11/2 +§1/2> :—5/2
3/2_9_ 3/2 _
i = 1 3u N Qz'd/ €20 B zd/ (22474
1225 4 5 (~1/2 .—1/2)4.—3/2 1/2  —
2" +72g Zd 2(3d + 2
3/2 _ _
N zd/ (—23'dzd —273% + 362) T
4 (,,1/2 +51/2) ?3/“
9 31z 10e2u 3e%
0=7 2 3 . 1
2 2 1/2 —
1625 3223 8(3(1/ e 1/2) 7
24 —Zq B (—22475 + 625° + 382 1n




Example of the velocity stream function:

z,==2+2i, 0=57/4, ¢€-=1.

| Y =Tm[zf(2) + g(2)]




From different initial points




