Asteroseismology: a tool to unveil stellar interiors

A. Noels

Institut d'Astrophysique – Université de Liège Liège, Belgium

Thanks to Josefina Montalban, Andrea Miglio, Mélanie Godart, Marc-Antoine Dupret, Sébastien Salmon, Paolo Ventura & Kevin Belkacem

CPS 7th International School, Kobe, January 10-14, 2011

Part 1

1. Stellar oscillations across the HR diagram

2. Setting the stage An introduction to theoretical asteroseismology

Questions:

Why do we worry about ste because we want to know the

Why don't we go and look the because with classical telescond surface layers...

scopes?

see the

Stars are essentially opaque and we cannot access the internal layers through classical observations

Bases of asteroseismology

Measure of temporal - stellar flux variations - radial velocity variations

Frequencies are characteristics of the source

stellar structure

2.1 Adiabatic stellar pulsations

The specific entropy is conserved during the oscillation $\delta S = 0$ No energy exchange between mass elements

- standing waves
- strictly periodic \rightarrow exp(iot) with σ real
- no amplitude growth
- no amplitude damping

3D standing waves – a star

3D standing waves – a star

n: radial orderradial nodes $n = 0, ..., \infty$ I: degreenodal planes $I = 0, ..., \infty$ m: azimuthal ordermeridian nodal planesm = -1, ..., + 1

2.1.1 Adiabatic pulsation modes

Perturbation and linearization of the equations of

- mass conservation
- momentum conservation

• energy conservation $\delta S = 0$

$\delta X(r,\theta,\phi,t) = \delta X(r) Y_{e}^{m}(\theta,\phi) \exp(i\sigma t)$

Spherical harmonics $Y_{e}^{m}(\theta, \phi)$

Cowling approximation : $\Phi' = 0$

mass and momentum equations $\rightarrow 2^{nd}$ order eigenvalue problem

N: Brunt-Väisälä frequency
$$N^2 = \frac{Gm}{r^2} \left(\frac{1}{\Gamma_1} \frac{d\ln P}{dr} - \frac{d\ln \rho}{dr} \right)$$

$$N^2 = \frac{g}{r} \frac{d\ln P}{d\ln r} \left[\left(\frac{\partial \ln \rho}{\partial \ln T} \right)_{P,\mu} \left(\nabla_{ad} - \nabla \right) - \left(\nabla_{\mu} \left(\frac{\partial \ln \rho}{\partial \ln \mu} \right)_{T,P} \right]$$

Unno, Osaki, Ando, Saio, Shibahashi 1989 Non radial oscillations of stars

Cowling approximation : $\Phi' = 0$

mass and momentum equations $\rightarrow 2^{nd}$ order eigenvalue problem

$$\frac{dP'}{dr} + \frac{g}{c^2}P' = (\sigma^2 + N^2) \rho \,\delta r \qquad c^2 = \Gamma_1 P/\rho \\ \Gamma_1 = (\partial \ln P/\partial \ln \rho)_s \\ \nabla = (\partial \ln T/\partial \ln P) \\ \nabla_\mu = (\partial \ln \mu/\partial \ln P) \\ \nabla_\mu = (\partial \ln \mu/\partial \ln P) \end{cases}$$

 L_{ℓ} : Lamb frequency L_{ℓ}^2 depends on L_{ℓ}^2

Unno, Osaki, Ando, Saio, Shibahashi 1989 Non radial oscillations of stars

Local analysis

Assumption:

constant coefficients (equilibrium values)

Plane wave equation

$$\frac{d^2 \bar{\delta r}}{dr^2} + k^2(r) \, \bar{\delta r} \simeq 0$$
$$\delta r \sim \exp(ik_r r)$$

k : wavenumber k_r: radial component k_h: horizontal component $\bar{\delta r} \equiv \frac{\rho^{1/2} r c}{\left|L_{\ell}^2 / \sigma^2 - 1\right|^{1/2}} \ \delta r$

$$k_r^2 = (1/\sigma c)^2 (\sigma^2 - L_\ell^2) (\sigma^2 - N^2)$$

 \mathbf{O}

Dispersion relation relating wave number and frequency

Propagation diagram

As the star evolves, N \mathcal{P} as a result of the formation of a μ -gradient

r/R

Sperical symmetry → no terms f(φ) in the equations → modes of given I and different m have the same frequency

With a rotation Ω , degeneracy is lifted

Since modes of different I probes layers located at different depths, **rotational splittings** gives $\Omega(r)$

m=-2 m=-1 m=0 m=1 m=2

2.1.2 Pressure modes

$\sigma^{2} > N^{2}, L_{e}^{2}$

as I increases, the p cavity becomes smaller

modes with different (I,v) probe different layers

A standing wave is formed when all the « bounces » on the surface lead to a *constructive* interference pattern

Pressure modes

$$k_r^2 = \sigma^2/c^2 (L_{\ell}^2/\sigma^2 - 1) (N^2/\sigma^2 - 1)$$

$$k_r^2 \sim \sigma^2/c^2 (1 - L_{\ell}^2/\sigma^2) \qquad k$$

$$\sigma^2 >> N^2$$

 $\sigma^2 > N^2$,

$$k_h^2 = I (I+1)/r^2 = L_l^2/c^2$$

$$k^2 = k_r^2 + k_h^2 \sim \sigma^2/c^2$$

 PI_1

 ρ

constraint on the **sound speed** in the outer layers

temperature distribution convective envelope limit

partial ionization, equation of state

[]

 μ

mean molecular weight chemical composition

Pressure modes – asymptotic regime n >>

Seismic indicators: 1. Large separation

$$\Delta \nu_{n,\ell} = \nu_{n,\ell} - \nu_{n-1,\ell} \approx \left(2\int_{r_i}^{r_s} \frac{\mathrm{d}r}{c}\right)^{-1} \propto \langle \rho \rangle$$

Tassoul 1980, Smeyers & Tassoul 1988

Pressure modes – asymptotic regime n >>

Seismic indicators: 1. Large separation

$$\Delta \nu_{n,\ell} = \nu_{n,\ell} - \nu_{n-1,\ell} \approx \left(2 \int_{r_i}^{r_s} \frac{\mathrm{d}r}{c} \right)^{-1} \propto \sqrt{\frac{GM}{R^3}}$$

Constraint on the distribution of the sound speed in the p-mode cavity

Tassoul 1980, Smeyers & Tassoul 1988

Large separation - Echelle diagram

Smeyers et al. 1988: In ESA, Seismology of the Sun and Sun-Like Stars p.623-627

High Altitude Observatory

Pressure modes – asymptotic regime n>>

Seismic indicators: 2. Small separation

$$v_{n,I} = \Delta v (n + I/2 + \varepsilon) + \delta_{n,I}$$

Seismic indicators

$$v_{n,I} = \Delta v (n + I/2 + \varepsilon) + \delta_{n,I}$$

$$c^2 = \frac{P \Gamma_1}{\rho} \simeq \frac{\Gamma_1 R T}{\mu}$$

Main Sequence Asteroseismic Diagram

Christensen-Dalsgaard 1982

Pressure modes – asymptotic regime n>>

Seismic indicators

large separation $\Delta_{n,\ell} = \nu_{n,\ell} - \nu_{n-1,\ell}$ depends on c(r), on global effects, small separation $\delta_{n,l} = \nu_{n,l} - \nu_{n-1,l+2}$ depends on dc/drsmall spacing $\delta_{01,n} = \nu_{n,0} - 2\nu_{n,1} + \nu_{n+1,0}$ discontinuities in dc/dr

2.1.3 Gravity modes

 $k_r^2 \sim |(+1) N^2/(r^2\sigma^2)$

constraints on the **Brunt-Väisälä frequency** in the inner layers

 $\sigma^2 < N^2, L_e^2$

super-adiabatic T gradient convective zone boundaries overshooting gradient of mean molecular weight chemical composition profile

Seismic indicator: Period spacing

Constraint on the distribution of the Brunt-Väisälä frequency in the g-mode cavity with a weight in 1/r

2.2 Non adiabatic stellar pulsations

In order to be observed, an oscillation must be excited

There must be energy exchanges between mass elements within the star during the pulsation

Oscillations are damped if $\eta < 0$ Energy conseOscillations are excited if $\eta > 0$

$$T \frac{\partial S}{\partial t} = \left(\varepsilon - \frac{\partial L}{\partial m} \right)$$

 $\delta X(r,t) = \delta X(r) \sin(\sigma t - \phi(r)) \exp(\eta t)$

exp(i σ t) \rightarrow term ~ i σ \rightarrow complex eigenvalue $\rightarrow \sigma$ – i η

2.2 Non adiabatic stellar pulsations

Energy conservation equation

Perturbation 🗲

$$T \frac{\partial S}{\partial t} = \left(\mathcal{E} - \frac{\partial L}{\partial m} \right)$$

$$\frac{\tau_{th}}{\tau_{dyn}} i \omega \frac{\delta S}{c_P} = \left(\delta \varepsilon - \frac{\partial \delta L}{\partial m}\right) \frac{4\pi r^3 \rho}{L}$$

$$\begin{split} & \varpi = \sigma \ \tau_{dyn} \\ & \tau_{dyn} = (\mathsf{R}^3/\mathsf{G}\mathsf{M})^{1/2} \\ & \tau_{th} = (4\pi r^3 \rho c_{\mathsf{P}}\mathsf{T})/\mathsf{L} \end{split}$$

δ S becomes large if τ_{th}/τ_{dyn} decreases

Non adiabatic region

→ oscillation frequency

Excitation mechanisms

Heat engine

Self excited oscillations

Amplitude **7** until a limit cycle is reached

- κ mechanism
- ε mechanism

Cepheids, δ Scuti, SPB, β Cep ...

Stochastic excitation

Damped oscillations

Excitation by turbulent motions in a convective zone « drum excitation »

Solar-like oscillations

Excitation mechanism – heat engine

 $\delta X(r,t) = \delta X(r) sin(\sigma t + \phi(r)) exp(ηt)$

Functioning condition of a thermodynamical engine

ionization zone **→** opacity bump

At the hot phase, heat can enter but cannot go out

At the cold phase, heat cannot enter but can go out

 $\kappa \nearrow \rightarrow \delta \kappa / \kappa > 0 \rightarrow \delta L < 0$

 $\kappa \ge \delta \kappa / \kappa < 0 \Rightarrow \delta L > 0$

 $d\delta L/dr > 0$, $\delta T/T < 0 \rightarrow dW/dr > 0$

The opacity bump must be in the transition region

Instability strip

Stochastic excitation – solar-like oscillations

Solar-like oscillations result from **damped** acoustic modes

Turbulent motions at the top of the convective envelope stochastically hit the photosphere

Stochastically excited mode

Excitation mechanism

Reference

Smeyers, P., Briers, R., Tassoul, M., Degryse, K., Polfliet, R., Van Hoolst, T., 1988: Asymptotic approximations of

nonradial oscillation modes of the Sun, In ESA, Seismology of the Sun and Sun-Like Stars p.623-627

Christensen-Dalsgaard, J., 1982: On solar models and their periods of oscillation, Royal Astronomical Society,

Monthly Notices, Vol. 199, 735-761.

Charpinet, S., Fontaine, G., Brassard, P., 2001: A Theoretical Exploration of the Pulsational Stability of Subdwarf

B Stars, The Publications of the Astronomical Society of the Pacific, Vol. 113, 785, 775-788.