At z=1000 the Universe has cooled down to 3000 K. Hydrogen becomes neutral ("Recombination").

At z < 20 the first "PopIII" star (clusters)/small galaxies form.

At 6-15 these gradually photooniz heheito en in the Gradually

At z<6 galaxies form most of their stars and grow by merging.

At z<1 massive galaxy clusters are assembled.

"Historical" material

- Barkana, R. & Loeb, A. 2001, Phys. Rep., 349, 125
- Bromm, V. & Larson, R. 2004, ARA&A, 42, 79
- Ciardi, B. & Ferrara, A. 2006, SSRv, 116, 625 (updated: Apr 2008)

Recent material

Ferrara, A. 2008, Saas-Fee School, available at web site http://www.sns.it/it/scienze/menunews/docentiscienze/ferraraandrea/lectures/

36th Saas-Fee Advanced Lectures 2006 The First Light in the Universe

Lecture #1

Star Formation in Primordial Gas

Andrea Ferrara, Scuola Normale, Pisa

First Stars and the Dark Ages

Present-day gas

Heavy element mass fraction < 2%C⁺, O, CO, dust grains excellent radiators Thermal eq. timescale « dynamical timescale Typical cloud temperature ≈ 10 K

Primordial gas

No heavy elements H, He poor radiators for $T < 10^4$ K Cloud evolves almost adiabatically.. ..unless H₂ molecules can form

MAIN COOLING PROCESSES IN PRIMORDIAL GAS

1. Radiative recombination

Thermal energy loss of recombining proton and electron due to photon emitted in the process Recombinations to the lowest state lead to ionizing photons, hence net loss = 0 Total rate obtained by summing over all rates for levels with n > 1 (Case B recombination).

2. Collisional ionization

Thermal energy of electrons converted in ionization energy

 $\sigma_{ion} = a \ (EB)^{-1} ln \ (E/B) \ \{1-b \ exp[-c \ (E/B-1)]\} \quad E \ge B = 13.6 \ eV$ Total rate by integrating cross section over Maxwellian distribution

3. Bound-bound transition of hydrogen atom

Most important cooling process around 10,000 K; collisionally excited. Emitted radiation energy equal to energy difference between two levels Level population determined by excitation/de-excitation rates for each level

4. Thermal bremsstrahlung emission

Radiation due to acceleration of a charge in a Coulomb field $dE/dv \, dV \, dt = (16 \, \pi \, e^6 \, / 3 \, \sqrt{3} \, c^3 \, m_e^2 \, v) \, n_e \, n_p \, g_{ff}$ Total rate by integrating cross section over Maxwellian distribution

PRIMORDIAL COOLING FUNCTION

Martin Harwit, 2006: Astrophysical Concepts, Springer-Verlag

FUNDAMENTAL STAR FORMATION TIMESCALES

• Cooling time

 $t_{cool} = 3kT / 2n\Lambda(T)$

• Free-fall time

 $t_{ff} = (3\pi/32 \ G\rho)^{\frac{1}{2}}$

• Hubble time

$$t_H = H^{-1}(z)$$

COOLING DIAGRAM

Rees, M. J. & Ostriker, J. P., 1977, MNRAS, 179, 541

COOLING BY HYDROGEN MOLECULES

1. Radiative cooling

Hydrogen molecules have energy levels corresponding to vibrational $(10^3 K < T < 10^4 K)$ and rotational $(T < 10^3 K)$ transitions Einstein's A-coefficient much smaller (no dipole moment) \rightarrow Absorption coefficient very small

$$\Lambda_{H2} = n_{H2} \left[\begin{array}{c} n_H L_{vr}^{H}(n,T) + n_{H2} L_{vr}^{H2}(n,T) \right] \\ | \\ H-H_2 \end{array} \qquad H_2 - H_2 \quad collisional excitations$$

LEVEL POPULATION

De-excitation rate=Excitation ratecollisional $\propto n^2$ collisionalradiative decay $\propto n$ collisional

<u>*Critical density*</u> n_{crit} :: collisional exc. rate = radiative decay rate

 $\begin{array}{ll} \Lambda_{H2} \propto n^2 & for \ n < n_{crit} \\ \Lambda_{H2} \propto n & for \ n > n_{crit} \end{array}$

Ferrara, A. 2008, Saas-Fee School: http://www.sns.it/it/scienze/menunews/docentiscienze/ ferraraandrea/lectures/

10

COOLING BY HYDROGEN MOLECULES

2. Dissociation cooling/heating

Hydrogen molecules have lower potential energy than the state of two separated neutral H-atoms H_2 molecules absorb the thermal energy of the colliding particle causing the dissociation

 $\Lambda_{diss} = 7.16 \times 10^{-12} (dn_{H2}/dt)$ erg s⁻¹ cm⁻³

Dissociation of H_2 molecules can occur via three main channels:

- Collisions with H⁺ ions high ionization level
- Collisions with H atoms low ionization level
- Collisions with H₂ molecules *low ionization level*

Heating (reverse process) occurs when H_2 molecules form in an excited state If collisional de-excitation dominates over radiative decay (high n), energy transported into gas thermal energy

 $\Gamma_{form} = 7.16 \times 10^{-12} (dn_{H2}/dt)_{+} (1 + n_{cr}/n_{H})^{-1} \text{ erg s}^{-1} \text{cm}^{-3} \longrightarrow 0 \text{ for } n \ll n_{cr}$

FORMATION CHANNELS

H⁻ Channel 1.

 $H + e \rightarrow H^{-} + \gamma$ $H^{-} + H \rightarrow H_{2} + e$

 H_2^+ Channel 2.

 $H + H^{+} \rightarrow H_{2}^{+} + \gamma$ $H_{2}^{+} + H \rightarrow H_{2} + H^{+}$

- Dipole moment necessary to form H_2 in two-body reactions
- Require electrons or protons: ionization degree important

Three body reactions 3.

- $3H \rightarrow H_2 + H$ $2H + H_2 \rightarrow 2H_2$ Important at high $n > 10^8 \text{ cm}^{-3}$, i.e. during prestellar collapse
- Direct collision between excited H atoms 4. $H(n=1) + H(n=2) \rightarrow H_2 + \gamma$ • Important at $z > 10^3$ as CMB photons destroy H_2^+ and H^-

DISSOCIATION CHANNELS

Impact with H / H_2 1.

 $3H \leftarrow H_2 + H \text{ or} \\ 2H + H_2 \leftarrow 2H_2 \qquad \qquad \bullet T > 2000 \text{ K, lower T collisions not sufficiently energetic}$

Impact with H⁺ 2.

 $\begin{array}{c} H_2^{+} + H \leftarrow H_2 + H^+ \\ 2H \leftarrow H_2^{+} + e \end{array} \quad \bullet \text{ Important in hot ($T > 8000 K$) and ionized gas} \end{array}$

- Impact with electrons 3.
- Photodissociation 4.

$$H_2^* \leftarrow H_2 + \gamma$$
$$2H + \gamma \leftarrow H_2^*$$

 $2H + e \leftarrow H_2 + e$ • Always sub-dominant with respect to 2.

• Two step Solomon process; very important.

Physical hint:

$$t_{2body} \propto n^{-1} \propto (1+z)^{-3}$$

 $t_H \propto (1+z)^{-3/2}$

RELIC ELECTRONS $x_e^{rel} \approx 3 \times 10^{-4}$

RELIC MOL. HYDROGEN $y_{H2}^{rel} \approx 1.1 \times 10^{-6}, \qquad z < 100$ $\approx 1.0 \times 10^{-7}, \qquad 100 < z < 250$ $\approx 10^{-7} [(1+z)/250]^{-14}, \qquad 250 < z$

14

15

STRUGGLING FOR MORE H₂: SPHERICAL COLLAPSE

Dynamics

$$\frac{\rho}{\langle \rho \rangle} = \frac{9 (\alpha - \sin \alpha)^2}{2 (1 - \cos \alpha)^3} \qquad \text{where} \qquad \frac{1 + z_{vir}}{1 + z} = \left[(\alpha - \sin \alpha)/2\pi \right]^{2/3}$$
If $\rho > \rho_{vir} = 18\pi^2 \langle \rho \rangle \qquad \text{then} \qquad \rho = \rho_{vir}$

Thermo/chemical evolution

$$\frac{d}{dt} \frac{3 k T}{2 \mu m_p} = (p / \rho^2) \frac{d\rho}{dt} - \Lambda (T, y_i)$$
$$\frac{dy_i}{dt} = \sum k_j y_j + n_H \sum k_{kl} y_k y_l + n_H^2 \sum k_{mns} y_m y_n y_s$$

ENOUGH FOR COLLAPSE ?

 $t_{cool} = 3kT_{vir} / 2\mu n_{vir} \Lambda(y_{H2}, T_{vir}) = (3\pi / 32 G\rho_{vir})^{\frac{1}{2}} = t_{ff}$

Ferrara, A. 2008, Saas-Fee School: http://www.sns.it/it/scienze/ menunews/docentiscienze/ ferraraandrea/lectures/

ADDITIONAL PHYSICS: THE ROLE OF HD

• HD is the second most abundant primordial molecule

 $n_{HD} \approx 10^{-2} - 10^{-4} n_{H2}$

- It has a finite dipole moment of $\mu_{HD} \approx 0.83$ debye, hence higher transitional probabilities
- The energy difference for the lowest rotational transition is

$$\begin{array}{cc} H_{2} & HD \\ \Delta E_{20} \,/\, k = \,510 \, K & \Delta E_{20} \,/\, k = \,128 \, K \end{array}$$

Hence HD can reduce the gas temperature to T < 100K

HD FORMATION BEHIND SHOCKS

Shock velocity $v=100 \text{ km s}^{-1}$, z=20

 $D^+ + H_2 \twoheadrightarrow HD + H^+$

Abel, T., Bryan, G. L., & Norman, M. L. 2002

Lecture #2

Formation of the First Stars

Andrea Ferrara , Scuola Normale, Pisa

First Stars and the Dark Ages

Abel, T., Bryan, G. L., & Norman, M. L. 2002

SIMILARITY L-P SOLUTION

• Isothermal collapse (can be generalized to $p = k\rho^{\gamma}$)

• Eulerian formulation of fluid equations

$$\begin{aligned} \frac{\partial u}{\partial t} + u \,\frac{\partial u}{\partial r} + \frac{Gm}{r^2} + \mathscr{R}T \,\frac{d\ln\rho}{dr} &= 0, \\ \frac{\partial m}{\partial t} + 4\pi r^2 \rho u &= 0, \\ \frac{\partial m}{\partial r} - 4\pi r^2 \rho &= 0, \end{aligned}$$

• Search for solutions of the type

$$u(r, t) = b(t)u_1(s),$$

 $\rho(r, t) = c(t)\rho_1(s),$
 $m(r, t) = d(t)m_1(s),$
 $s = r/a(t).$

23

• This requires the following conditions

$$b(t) = 1$$
, $c(t) = a(t)^{-2}$, $d(t) = a(t)$.

• Substitute these solutions into fluid equations and eliminate equation for mass definition

$$\left(\frac{s}{\tau} + u_1\right) \frac{du_1}{ds} + 4\pi G \rho_1 (s + u_1 \tau) + \mathscr{R}T \frac{d\ln\rho_1}{ds} = 0,$$
$$\frac{du_1}{ds} + \left(\frac{s}{\tau} + u_1\right) \left(\frac{d\ln\rho_1}{ds} + \frac{2}{s}\right) = 0,$$

• Here $\tau = -(da/dt)^{-1}$ is a fixed constant. Finally reduce these eqs. to nondimensional form by defining:

$$x = \frac{s}{\tau\sqrt{(\mathscr{R}T)}}, \quad \xi = \frac{-u_1}{\sqrt{(\mathscr{R}T)}}, \quad \eta = 4\pi G \rho_1 \tau^2.$$

$$\frac{d\xi}{dx} = \frac{x-\xi}{x} \frac{\eta x (x-\xi) - 2}{(x-\xi)^2 - 1},$$
$$\frac{d\ln\eta}{dx} = \frac{x-\xi}{x} \frac{\eta x - 2(x-\xi)}{(x-\xi)^2 - 1}.$$

BOUNDARY CONDITIONS

• $\xi = 0 \text{ at } x = 0$

•
$$\eta x = 2 \text{ at } x - \xi = 1$$

Limiting behavior $x \gg 1$ $\frac{d \ln \xi}{d \ln x} \rightarrow 0$ $\frac{d \ln \eta}{d \ln x} \rightarrow -2$ as $x \rightarrow \infty$.

u(r) approaches a constant
ρ(r) approaches the form ρ∝ r^{-2/(2-γ)}

Ferrara, A. 2008, Saas-Fee School: http://www.sns.it/it/scienze/ menunews/docentiscienze/ ferraraandrea/lectures/

Numerical solution

Collapse proceeds qualitatively as free-fall, but pressure forces important to determine the form of the solution: for $x \ll l$ |pressure/gravity| = 0.6

CORE EVOLUTION

- 1D, spherically symmetric, no rotation, B-field,, external radiation
- Initial conditions: 100 M_0 , average $n = 10^6$ cm⁻³, $x_e = 5 \times 10^{-4}$, $y_{H2} = 10^{-10}$

Add energy eq. to L-P solution

$$\frac{de}{dt} = -p\frac{d}{dt}\left(\frac{1}{\rho}\right) - \frac{\Lambda_{\text{net}}}{\rho},$$

$$e = \frac{1}{\gamma_{\rm ad} - 1} \frac{kT}{\mu m_{\rm H}}$$

$$\Lambda_{\rm net} = \Lambda_{\rm H} + \Lambda_{\rm H_2} + \Lambda_{\rm cont} + \Lambda_{\rm Compt} + \Lambda_{\rm chem}$$

$$\tau_{\nu} = \kappa_{\nu} R_{\rm c} = \kappa_{\nu} \left(\frac{\lambda_{\rm J}}{2}\right)$$

26

PHYSICAL ARGUMENTS

Fragmentation condition

 $t_{cool} = 3kT / 2\mu n \Lambda(y_{H2}, T) \quad \ll (3\pi / 32 G\rho)^{\frac{1}{2}} = t_{ff}$

Energy deposited by gravitational contraction cannot balance radiative losses Temperature decreases with increasing density

•

$$R_F pprox \lambda_{
m J} \propto c_s t_{
m ff} \propto n^{\gamma/2-1}$$

Fragments form on a scale ensuring pressure equilibrium (Jeans length)

$$M_F \propto n R_F^{\eta} \propto n^{\eta \gamma/2 + (1-\eta)}$$
 • $\eta = 3$ for spheres
• $\eta = 2$ for filaments

PHYSICAL ARGUMENTS

Fragmentation stops because:

- 1. Critical density for LTE is reached
- 2. Gas becomes optically thick to cooling radiation

Necessary condition:

 $t_{cool} \ge t_{ff}$

Jeans mass does not decrease any further with increasing density

CORE THERMAL HISTORY

Chemical Network includes

H,D,He,C,O + *Dust* 55 species, 496 reactions

Fragmentation stopsHydrostatic core forms

Ferrara, A. 2008, Saas-Fee School: http://www.sns.it/it/scienze/ menunews/docentiscienze/ ferraraandrea/lectures/

Critical metallicity for IMF transition $Z = 10^{-5 \pm 1} Z_{\odot}$ determined by fragmentation physics

- *Run-away collapses produces a core + accreting envelope structure*
- Initial conditions: $M_c \approx 10^{-3} M_{\odot}$, $M_{env} \approx 10^{-3} M_{\odot}$

Accretion rate

$$\frac{dM}{dt} \approx M_J / t_{ff} \propto \lambda_J^3 \rho / t_{ff} \propto c_s^3 \rho t_{ff}^2 \propto c_s^3 G^{-1}$$

Numerical estimate

$$dM/dt \approx 4.4 \times 10^{-3} \text{ M}_{\odot}/\text{yr}$$
 (T = 1600 K)

 $\left. dM/dt \right|_{fiducial} = 4.4 \times 10^{-3} \mathrm{M_{\odot}/yr}$

Bromm, Volker; Larson, Richard B., 2004, ARA&A, 42, 79

PHYSICAL ARGUMENTS

• Adiabatic accretion

• High opacity, low interior luminosity

 $t_{KH} = (GM_{*}^{2}/R_{*}) L_{*}^{-1} \gg M_{*}/(dM/dt) = t_{acc}$

- Accreted material piles up without cooling. Temperature increase makes opacity fall rapidly.
- Luminosity wave reaches surface, causing a sudden swelling of star

Kelvin-Helmholtz contraction

- KH time becomes similar to accretion time
- Opacity dominated by electron scattering, leading to $L_{\star} \propto M_{\star}^{3}$ hence $t_{KH} \propto 1/M_{\star}R_{\star}$
- Stability condition leads to the relation $R_{\star} \propto (dM/dt) / M_{\star}^{2}$

• ZAMS settling

- Low accretion rate: central T high enough to synthesize C (catalyst of CN cycle) H burning begins. Star relaxes to ZAMS, unique mass-luminosity-radius relation
- *High accretion rate: Violent swelling due to radiation pressure exceeding the Eddington limit before H ignition. Blow away of the accreting envelope.*

REALISTIC ACCRETION RATES

Stellar growth limited only by capability to stop accretion

STOPPING THE INFALL

- Radiation Pressure (Opacity ?)
- Bipolar Outflows (Magnetic fields ?)
- Angular Momentum Barrier (Disk formation?)
- Competitive Accretion by Companions

Top-Heavy Primordial IMF?

EFFECTS OF ROTATION

- Protostellar cores are seen in rotation in numerical simulations with $v_{rot} \approx \frac{1}{2} v_{Keplerian}$
- Most mass reaches the star via an accretion disk \rightarrow optical depth decreases
- Photosphere shrinks to stellar surface
- Higher fluxes of ionizing and FUV radiation

"Historical" material

- Barkana, R. & Loeb, A. 2001, Phys. Rep., 349, 125
- Bromm, V. & Larson, R. 2004, ARA&A, 42, 79
- Ciardi, B. & Ferrara, A. 2006, SSRv, 116, 625 (updated: Apr 2008)

Recent material

Ferrara, A. 2008, Saas-Fee School, available at web site http://www.sns.it/it/scienze/menunews/docentiscienze/ferraraandrea/lectures/

36th Saas-Fee Advanced Lectures 2006 The First Light in the Universe

Additional references

- Martin Harwit, 2006: Astrophysical Concepts, Springer-Verlag
- Rees, M. J. & Ostriker, J.P., 1977: Cooling, dynamics and fragmentation of massive gas clouds Clues to the masses and radii of galaxies and clusters, MNRAS,179,541
- Abel, Tom; Bryan, Greg L.; Norman, Michael L., 2002: The Formation of the First Star in the Universe, Science, Volume 295, Issue 5552, pp. 93-98
- Tan, Jonathan C.; McKee, Christopher F., 2004: The Formation of the First Stars. I. Mass Infall Rates, Accretion Disk Structure, and Protostellar Evolution, ApJ,603,383
- Omukai, Kazuyuki; Palla, Francesco, 2003: Formation of the First Stars by Accretion, ApJ,589,677