The chemical compositions of the Sun																		
1 H	a	ľ	nd	E	X	0	pl	al	ne	et	h	0	st	S	ta	rs		2 He
3 Li	4 Be										in the	1	5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg									36			13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	h	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	h	103 Lr	104 Ku	105 Ha	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
		l	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
		L	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Max Planck Institute for Astrophysics

Martin Asplund

Origin of the elements

- When, where and how were the different chemical elements produced in the Universe?
- Probing stellar, galactic and cosmic evolution

Stellar production sites

Low-mass stars Long time-scales Carbon etc See lectures by P. Wood, G. Meynet, A. Heger & S. Wanajo!

Intermediate/massive stars Intermediate/short time-scales Nitrogen etc

> Supernovae II Short time-scales Oxygen etc

Supernovae la Long time-scale Iron etc

images are adopted from http://www.stsci.edu/hst/

Elemental fingerprints

The properties of stars are encoded in their light but detailed modeling is required:

Stellar atmospheres

flux

Stellar

Formation of the stellar spectrum

Outline

Lecture 1: Solar/stellar spectroscopy

- Stellar atmospheres
- Spectral line formation

Lecture 2: Solar chemical composition

- Does the Sun have a subsolar metallicity?
- Solar modeling crisis

Lecture 3: Is the Sun unusual?

- Chemical signatures of (exo)planets?
- Implications for Galactic archaeology

Main partners in crime

Åke Nordlund

Nicolas Grevesse

(+ many collaborators)

Past and present PhD students + postdocs: Patrick Baumann, Remo Collet, Wolfgang Hayek, Karin Lind, Jorge Melendez, Tiago Pereira, Ivan Ramirez, Pat Scott, Regner Trampedach etc

Solar atmosphere

1D solar atmosphere models

Theoretical models:

- Time-independent
- 1-dimensional
- Hydrostatic
- Convection: mixing length theory
- LTE
- Detailed radiative transfer
- Kurucz, MARCS, Phoenix etc

Semi-empirical models:

- Temperature structure from observations
- Holweger-Mueller (1974)

3D solar atmosphere models

Ingredients:

- Radiative-hydrodynamical
- Time-dependent
- 3-dimensional
- Simplified radiative transfer
- LTE

Essentially parameter free

For the aficionados:

Stagger-code (Nordlund et al.) MHD equation-of-state (Mihalas et al.) MARCS opacities (Gustafsson et al.) Opacity binning (Nordlund)

Hydrodynamics equations

Conservation of mass:

$$\frac{\partial \ln \rho}{\partial t} = -\bar{\mathbf{v}} \cdot \nabla \ln \rho - \nabla \cdot \bar{\mathbf{v}}$$
(1)

Conservation of momentum:

$$\frac{\partial \bar{\mathbf{v}}}{\partial t} = -\bar{\mathbf{v}} \cdot \nabla \bar{\mathbf{v}} + \bar{\mathbf{g}} - \frac{P}{\rho} \nabla \ln P + \frac{1}{\rho} \nabla \cdot \sigma \qquad (2)$$

Conservation of energy:

$$\frac{\partial e}{\partial t} = -\bar{\mathbf{v}} \cdot \nabla e - \frac{P}{\rho} \nabla \cdot \bar{\mathbf{v}} + \mathbf{Q}_{\text{rad}} + Q_{\text{visc}} \qquad (3)$$

 $Q_{\rm rad} = {\rm radiative heating/cooling rate}$

 $Q_{\rm rad}$ obtained from the equation of radiative transfer

Radiative transfer

3D radiative heating/cooling rate:

$$Q_{\rm rad} = \int_{\lambda} \int_{\Omega} \kappa_{\lambda} (I_{\lambda} - S_{\lambda}) d\Omega d\lambda \qquad (1)$$

Radiative transfer along a ray:

$$\mathrm{d}I_{\lambda}/\mathrm{d}\tau_{\lambda} = I_{\lambda} - S_{\lambda} \tag{2}$$

LTE \Rightarrow $S_{\lambda} = B_{\lambda}$ (no scattering)

Opacity binning (Nordlund 1982):

$$\int_{\lambda} \kappa_{\lambda} \left(J_{\lambda} - B_{\lambda} \right) \simeq \sum_{i} \sum_{j(i)} w_{\lambda_{j}} \kappa_{\lambda_{j}} \left(J_{\lambda_{j}} - B_{\lambda_{j}} \right)$$
$$\simeq \sum_{i} w_{i} \kappa_{i} \left(J_{i} - B_{i} \right) \tag{3}$$

Bins: continuum, weak+intermediate+strong lines

Opacity binning

Group wavelengths together that have similar opacities and wavelengths

3D atmosphere simulation

Temporal evolution of entropy in atmosphere of metal-poor red giant

Driving mechanism

- Ascending warm gas cools by radiation at the surface
 Cooling ⇒ photons escape more easily ⇒ more cooling
- Cool, entropy-deficient gas pulled down amidst...
- ... warm, isentropic gas

Convection driven by radiative cooling at surface!

Magneto-convection

Full 3D radiative magneto-hydrodynamics simulations of sunspots (Rempel et al. 2009)

Temperature structure

- Very steep temperature structure in upflows
- Significant temperature inhomogeneities

Temperature structure

Atmospheric temperature structure is critical

Our 3D model performs remarkably well

Spectral line formation

Radiative transfer

Complexity

3D non-LTE

Now becoming possible but <u>very</u> computationally demanding

Trivial...

1D non-LTE

Mature topic but often lack of atomic data

3D LTE

Straightforward but ~10⁹ 1D calculations

3D LTE radiative transfer

Radiative transfer:

3D LTE: $N_x * N_y * N_{frequency} * N_{angle} * N_{time} \sim 10^9$ **1D radiative transfer solutions**

3D non-LTE radiative transfer

Non-LTE: solve RT for all transitions (>100) and iterate (>10x) to get level populations...

$$\frac{\mathrm{d}n_i}{\mathrm{d}t} = \sum_{j\neq i}^N n_j P_{ji} - n_i \sum_{j\neq i}^N P_{ij} = 0$$

$$P_{ij} = A_{ij} + B_{ij}\overline{J}_{\nu_0} + C_{ij}.$$

Spatially resolved lines

Line profiles vary tremendously across the solar surface

Asplund et al., 2009, ARAA, 43, 481

3D model describes observations very well in most cases

More spatially resolved lines

Different behaviour due to varying sensitivity to temperature, pressure, velocity and height of formation

Averaged line profiles

No free parameters (micro-/macroturbulence, mixing lengths) needed in 3D analysis!

More observational tests

Lecture 2: Solar abundances

		[Do)e	S	tl	ne		Βι	JN		18	V	e	a			
1 H			SU	b	S	ol	ar		n	et	al	lli	ci	ty	?			2 He
3 Li	4 Be								2		150	1	5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg									96°		1.3	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	٩	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	h	103 Lr	104 Ku	105 Ha	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
		L	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Solar abundances

The solar chemical composition is a fundamental yardstick for almost all astronomy

Some compilations: Russell (1929) Unsöld (1948) Suess & Urey (1956) Goldsmith et al. (1960) Anders & Grevesse (1989) Grevesse & Sauval (1998) Lodders (2003) Asplund et al. (2005, 2009)

Atomic Number

Solar system abundances

Meteorites

Mass spectroscopy Very high accuracy Element depletion

Solar atmosphere

Solar spectroscopy Modelling-dependent Very little depletion

Adopted from http://sohowww.nascom.nasa.gov/

Solar abundances revisited

- Asplund, Grevesse, Sauval, Scott, 2009, ARAA, 47, 481 + series of A&A papers
- Realistic 3D model for the solar atmosphere
- Detailed spectrum formation calculations
- Improved atomic and molecular input data
- Careful selection of lines

Element	Anders & Grevesse (1989)	Asplund et al. (2009)	Difference		
Carbon	8.56+/-0.06	8.43+/-0.05	-26%		
Nitrogen	8.05+/-0.04	7.83+/-0.05	-40%		
Oxygen	8.93+/-0.03	8.69+/-0.05	-42%		

Note: logarithmic scale with H defined to have 12.00

Oxygen

Oxygen diagnostics

- Discordant results in 1D: log O~8.6-8.9
- Excellent agreement in 3D: log O=8.69±0.05
- Asplund et al. (2009)

Lines	MARCS	Holweger- Mueller	3D			
[O I]	8.69+/-0.05	8.73+/-0.05	8.70+/-0.05			
01	8.62+/-0.05	8.69+/-0.05	8.69+/-0.05			
OH, dv=0	8.78+/-0.03	8.83+/-0.03	8.69+/-0.03			
OH, dv=1	8.75+/-0.03	8.86+/-0.03	8.69+/-0.03			

Two often-used 1D model atmospheres

[O I]: blends

Allende Prieto et al. 2001: Blend with Ni: -0.19 dex

Johansson et al. 2003: gf-value of Ni I blend measured experimentally

Scott et al. 2009: New solar Ni abundance

Asplund et al. 2009, Pereira et al. 2009: log O = 8.69±0.05

(Similar results for other [OI] lines)

OI: non-LTE and collisions

Hydrogen collisions

Use Drawin 1968 recipe with scaling factor S_H S_H guessed until recently: Asplund et al. 2004: $S_H=0$ (other elements) Caffau et al. 2008: $S_H=1/3$ (why not)

O I: non-LTE effects

High-excitation O I lines are sensitive to non-LTE effects Non-LTE - LTE ≈ -0.2 dex

Pereira et al. 2009a: Use observed centerto-limb variations to determine poorly known H collisions

Asplund et al. 2009a: log O=8.69±0.05 Note: S_H only makes sense for a given model atom and atmosphere

OH lines: 3D effects

Molecular lines are very temperature sensitive 3D model: different mean $T(\tau)$ and T inhomogenities

Carbon diagnostics

- Discordant results in 1D: log C~8.4-8.7
- Excellent agreement in 3D: log C=8.43±0.05
- C/O=0.55±0.07

Asplund et al. (2009)

Lines	MARCS	Holweger- Mueller	3D
[C I]	8.38	8.41	8.41
CI	8.39+/-0.04	8.45+/-0.04	8.42+/-0.05
CH, dv=1	8.44+/-0.04	8.53+/-0.04	8.44+/-0.04
CH, A-X	8.43+/-0.03	8.51+/-0.03	8.43+/-0.03
C ₂ , Swan	8.46+/-0.03	8.51+/-0.03	8.46+/-0.03
CO, dv=1	8.55+/-0.02	8.60+/-0.01	8.44+/-0.01
CO, dv=2	8.58+/-0.02	8.69+/-0.02	8.44+/-0.01

Solar Fe abundance

3D model:

log Fe I =7.51±0.05

log Fe II=7.50±0.04

Holweger & Müller:

Fe I trend with χ_{ex}

Fe I and Fe II offset

Independent studies

3D-based solar analysis by CO5BOLD collaboration Caffau, Ludwig, Steffen, Freytag et al.

Element	Caffau et al. (2008, 2009, 2010)	Asplund et al. (2009)
Carbon	8.50+/-0.11	8.43+/-0.05
Nitrogen	7.86+/-0.12	7.83+/-0.05
Oxygen	8.76+/-0.07	8.69+/-0.05

Very good agreement when same input data are used

- Selection of lines
- Equivalent widths
- Non-LTE corrections

(Caffau et al. do not consider molecular lines)

Complete solar inventory

Asplund et al. (2009, ARAA): 3D-based analysis of <u>all</u> elements Statistical and systematic errors included in total uncertainties

Table 1 Element abundances in the present-day solar photosphere. Also given are the corresponding values for CI carbonaceous chondrites (Lodders, Palme & Gail 2009). Indirect photospheric estimates have been used for the noble gases (Section 3.9)

<u>_</u>	Element	Photosphere	Meteorites	L	Element	Photosphere	Meteorites
1	Н	12.00	8.22 ± 0.04	44	Ru	1.75 ± 0.08	1.76 ± 0.03
2	He	[10.93 ± 0.01]	1.29	45	Rh	0.91 ± 0.10	1.06 ± 0.04
5	Li	1.05 ± 0.10	3.26 ± 0.05	46	Pd	1.57 ± 0.10	1.65 ± 0.02
4	Be	1.38 ± 0.09	1.30 ± 0.03	47	Ag	0.94 ± 0.10	1.20 ± 0.02
5	В	2.70 ± 0.20	2.79 ± 0.04	48	Cd		1.71 ± 0.03
6	С	8.43 ± 0.05	7.39 ± 0.04	49	In	0.80 ± 0.20	0.76 ± 0.03
7	N	7.83 ± 0.05	6.26 ± 0.06	50	Sn	2.04 ± 0.10	2.07 ± 0.06
8	0	8.69 ± 0.05	8.40 ± 0.04	51	Sb		1.01 ± 0.06
9	F	4.56 ± 0.30	4.42 ± 0.06	52	Te		2.18 ± 0.03
10	Ne	$[7.93 \pm 0.10]$	-1.12	53	I		1.55 ± 0.08
11	Na	6.24 ± 0.04	6.27 ± 0.02	54	Xe	$[2.24 \pm 0.06]$	-1.95
12	Mg	7.60 ± 0.04	7.53 ± 0.01	55	Cs		1.08 ± 0.02
13	Al	6.45 ± 0.03	6.43 ± 0.01	56	Ba	2.18 ± 0.09	2.18 ± 0.03
14	Si	7.51 ± 0.03	7.51 ± 0.01	57	La	1.10 ± 0.04	1.17 ± 0.02
15	Р	5.41 ± 0.03	5.43 ± 0.04	58	Ce	1.58 ± 0.04	1.58 ± 0.02
16	S	7.12 ± 0.03	7.15 ± 0.02	59	Pr	0.72 ± 0.04	0.76 ± 0.03
17	Cl	5.50 ± 0.30	5.23 ± 0.06	60	Nd	1.42 ± 0.04	1.45 ± 0.02
18	Ar	$[6.40 \pm 0.13]$	-0.50	62	Sm	0.96 ± 0.04	0.94 ± 0.02
19	K	5.03 ± 0.09	5.08 ± 0.02	63	Eu	0.52 ± 0.04	0.51 ± 0.02
20	Ca	6.34 ± 0.04	6.29 ± 0.02	64	Gd	1.07 ± 0.04	1.05 ± 0.02
21	Sc	3.15 ± 0.04	3.05 ± 0.02	65	Tb	0.30 ± 0.10	0.32 ± 0.03
22	Ti	4.95 ± 0.05	4.91 ± 0.03	66	Dy	1.10 ± 0.04	1.13 ± 0.02
23	V	3.93 ± 0.08	3.96 ± 0.02	67	Ho	0.48 ± 0.11	0.47 ± 0.03
24	Cr	5.64 ± 0.04	5.64 ± 0.01	68	Er	0.92 ± 0.05	0.92 ± 0.02
25	Mn	5.43 ± 0.04	5.48 ± 0.01	69	Tm	0.10 ± 0.04	0.12 ± 0.03
26	Fe	7.50 ± 0.04	7.45 ± 0.01	70	Yb	0.84 ± 0.11	0.92 ± 0.02
27	Co	4.99 ± 0.07	4.87 ± 0.01	71	Lu	0.10 ± 0.09	0.09 ± 0.02
28	Ni	6.22 ± 0.04	6.20 ± 0.01	72	Hf	0.85 ± 0.04	0.71 ± 0.02
29	Cu	4.19 ± 0.04	4.25 ± 0.04	73	Ta		-0.12 ± 0.04
30	Zn	4.56 ± 0.05	4.63 ± 0.04	74	W	0.85 ± 0.12	0.65 ± 0.04
31	Ga	3.04 ± 0.09	3.08 ± 0.02	75	Re		0.26 ± 0.04
32	Ge	3.65 ± 0.10	3.58 ± 0.04	76	Os	1.40 ± 0.08	1.35 ± 0.03
33	As		2.30 ± 0.04	77	Ir	1.38 ± 0.07	1.32 ± 0.02
34	Se		3.34 ± 0.03	78	Pt		1.62 ± 0.03
35	Br		2.54 ± 0.06	79	Au	0.92 ± 0.10	0.80 ± 0.04
36	Kr	$[3.25 \pm 0.06]$	-2.27	80	Hg		1.17 ± 0.08
37	Rb	2.52 ± 0.10	2.36 ± 0.03	81	TÎ	0.90 ± 0.20	0.77 ± 0.03
38	Sr	2.87 ± 0.07	2.88 ± 0.03	82	Pb	1.75 ± 0.10	2.04 ± 0.03
39	Y	2.21 ± 0.05	2.17 ± 0.04	83	Bi		0.65 ± 0.04
40	Zr	2.58 ± 0.04	2.53 ± 0.04	90	Th	0.02 ± 0.10	0.06 ± 0.03
41	Nb	1.46 ± 0.04	1.41 ± 0.04	92	U		-0.54 ± 0.03
42	Mo	1.88 ± 0.08	1.94 ± 0.04		-		

Meteorites

Excellent agreement with the most pristine meteorites (CI chondrites)

(Some) Implications

- Significantly lower solar metal mass fraction Z
 - Z=0.0213 (Anders & Grevesse 1989)
 - Z=0.0143 (Asplund et al. 2009)
- Alters cosmic yardstick
 - [X/H], [X/Fe] etc
- Makes Sun normal compared with surroundings
 - Young stars in solar neighborhood
 - Local interstellar medium

Solar neighborhood

Asplund et al. (2009): Proto-Sun agrees with present-day ISM and OB stars

Table 5 Comparison of the protosolar abundances with those in nearby B stars and HII regions^a

Elem.	Sun ^b	Sun ^c	B stars ^d	Hıı ^e	GCEf
He	10.98 ± 0.01	10.98 ± 0.01	10.98 ± 0.02	10.96 ± 0.01	0.01
С	8.56 ± 0.06	$8.47~\pm~0.05$	8.35 ± 0.03	8.66 ± 0.06	0.06
N	7.96 ± 0.06	$7.87~\pm~0.05$	7.76 ± 0.05	7.85 ± 0.06	0.08
0	8.87 ± 0.06	$8.73~\pm~0.05$	8.76 ± 0.03	8.80 ± 0.04	0.04
Ne	8.12 ± 0.06	$7.97~\pm~0.10$	8.08 ± 0.03	$8.00~\pm~0.08$	0.04
Mg	7.62 ± 0.05	7.64 ± 0.04	7.56 ± 0.05		0.04
Si	7.59 ± 0.05	7.55 ± 0.04	7.50 ± 0.02		0.08
S	7.37 ± 0.11	$7.16~\pm~0.03$	7.21 ± 0.13	7.30 ± 0.04	0.09
Ar	6.44 ± 0.06	6.44 ± 0.13	6.66 ± 0.06	6.62 ± 0.06	
Fe	7.55 ± 0.05	7.54 ± 0.04	7.44 ± 0.04		0.14

Solar surface + diffusion (0.04 dex) (Asplund et al. 2009) Galactic chemical evolution over 4.5Gyr (Chiappini et al. 2003)

Comparison with OB stars

Improved non-LTE analysis of OB stars ⇒ Extremely homogeneous solar neighborhood ⇒ Agreement with new solar abundances

(Some) Implications

- Significantly lower solar metal mass fraction Z
 - Z=0.0213 (Anders & Grevesse 1989)
 - Z=0.0143 (Asplund et al. 2009)
- Alters cosmic yardstick
 - [X/H], [X/Fe] etc
- Makes Sun normal compared with surroundings
 - Young stars in solar neighborhood
 - Local interstellar medium
- Changes stellar structure and evolution
 - Wrecks havoc with helioseismology

Helioseismology I

Solar oscillations

Period: ~5 minutes Acoustic standing waves (p-modes) Surface amplitudes: ~10cm/s (cf. convection ~2km/s)

See lectures by A. Noels!

Helioseismology II

Inner turning point depends on mode (n,l)

Reconstruction of solar interior structure (sound speed and thus temperature and density)

Standard solar model

Input parameters

- Solar age: 4.57 Gyr
- Solar mass: 1.989x10³³ g
- Chemical composition: X_{in}, Y_{in}, Z_{in}
- Convection parameter (mixing length theory): α_{MLT}

Evolve solar model until present-day

Present-day constraints

- Solar luminosity: L_o = 3.842x10³³ erg/s
- Solar radius: R_{\odot} = 6.9598x10¹⁰ cm
- Atmospheric composition: (Z/X)_{atmo}

 L_{\odot} - R_{\odot} -(Z/X)_{atmo} \Leftrightarrow Y_{in} - Z_{in} - α_{MIT}

Trouble in paradise

Solar interior models with new abundances are in conflict with helioseismology

- Wrong sound speed
- Wrong depth of convection zone: R=0.723 vs 0.713±0.001
- Wrong surface helium abundance: Y=0.235 vs 0.248±0.004

Possible solutions

- Missing opacity?
 - -Possibly?
- Underestimated element diffusion?
 Unlikely
- Accretion of low-Z material?
 Unlikely
- Internal gravity waves?
 Possibly
- Underestimated solar Ne abundance?
 Unlikely
- Erroneous solar abundances?
 –Hopefully not
- Combination of some of the above?
 Contrived?

Missing opacity?

Serenelli (2009): Higher opacities by ~10-15% below the convection zone would restore agreement

Missing opacity?

- Higher opacities by ~10-15% below the convection zone would restore agreement
- Atomic physicists say at most 5% missing opacity
- But caution: history may repeat itself...
- Soon: experimental opacity data (laser facilities)

Solar neutrinos

Solar hydrogen burning

Predicted neutrino fluxes

Serenelli et al. (2009): GS98 AGS05 AGSS09 pp (10¹⁰) 5.976.04 6.01 pep (10^8) 1.41 1.451.43hep (10^3) 7.908.22 8.06 ^{7}Be (10⁹) 5.074.554.83 ^{8}B (10⁶) 5.944.725.38 ^{13}N (10⁸) 2.172.881.89150 (10^{8}) 1.602.151.34-25% 17 F (10^{6}) 5.833.253.96

New abundances decrease core temperature by ~1% & ¹³N and ¹⁵O fluxes proportional to C and N abundances U Neutrinos: independent estimate of solar C+N abundances

⁷Be vs ⁸B fluxes

SNO: $\Phi(^{8}B)=(5.17\pm0.31)\times10^{6} \text{ cm}^{-2} \text{ s}^{-1}$ Borexino: $\Phi(^{7}Be)=(5.18\pm0.51)\times10^{9} \text{ cm}^{-2} \text{ s}^{-1}$ (Arpesella et al. 2008)

⁸B vs ¹³N+¹⁵O

Better prospect of discriminating between solar chemical compositions with ¹³N and ¹⁵O neutrinos Borexino: expect 10% uncertainty \Rightarrow 2-3 σ result (Improved p+¹⁴N from LUNA experiment will also help)

Summary

Lecture 1: Solar/stellar spectroscopy

- 3D stellar atmospheres highly realistic
- 3D/non-LTE spectral line formation possible

Lecture 2: Solar chemical composition

- New low solar C, N, O, Ne abundances
- Conflict with solar interior models

Lecture 3: Is the Sun unusual?

Solar neighborhood

Asplund et al. (2009): Proto-Sun agrees with present-day ISM and OB stars

Table 5 Comparison of the protosolar abundances with those in nearby B stars and HII regions^a

Elem.	Sun ^b	Sun ^c	B stars ^d	Hıı ^e	GCEf
He	10.98 ± 0.01	10.98 ± 0.01	10.98 ± 0.02	10.96 ± 0.01	0.01
С	8.56 ± 0.06	$8.47~\pm~0.05$	8.35 ± 0.03	8.66 ± 0.06	0.06
N	7.96 ± 0.06	$7.87~\pm~0.05$	7.76 ± 0.05	7.85 ± 0.06	0.08
0	8.87 ± 0.06	$8.73~\pm~0.05$	8.76 ± 0.03	8.80 ± 0.04	0.04
Ne	8.12 ± 0.06	$7.97~\pm~0.10$	8.08 ± 0.03	$8.00~\pm~0.08$	0.04
Mg	7.62 ± 0.05	7.64 ± 0.04	7.56 ± 0.05		0.04
Si	7.59 ± 0.05	7.55 ± 0.04	7.50 ± 0.02		0.08
S	7.37 ± 0.11	$7.16~\pm~0.03$	7.21 ± 0.13	7.30 ± 0.04	0.09
Ar	6.44 ± 0.06	6.44 ± 0.13	6.66 ± 0.06	6.62 ± 0.06	
Fe	7.55 ± 0.05	7.54 ± 0.04	7.44 ± 0.04		0.14

Solar surface + diffusion (0.04 dex) (Asplund et al. 2009) Galactic chemical evolution over 4.5Gyr (Chiappini et al. 2003)

Sun vs Galactic disk stars: [Fe/H]

Casagrande et al. 2010: Revision of Geneva Copenhagen Survey of ~14000 stars in solar neighborhood (Nordström et al. 2004) New T_{eff} , [Fe/H] and ages

Sun vs Galactic disk stars: age

Casagrande et al. 2010: (Lack of) Age – metallicity relation: flat with large scatter

Sun vs Galactic disk stars: [X/Fe]

Exoplanets

Signatures in chemical compositions due to presence of planets? What about the Sun?

Now >500 exoplanets known:

- Pulsar timing
- Radial velocity
- Transits
- Microlensing
- Direct imaging
- etc

Metallicity dependence

Gonzalez (1997): Planet hosts are more metal-rich than average

Reasons: – Primordial?

- Pollution?

No dependence on size of conv. zone → Primordial

Planet formation scenarios

Two proposed main planet formation scenarios:

- Core-accretion (Pollack et al. 1996) → [Fe/H] dep.
- Gravitational instability (Boss 1997)

Lithium

Lithium and planets?

Israelian et al. (2009, Nature): Solar-like stars with planets tend to have less Li Increased Li depletion due to more rotational mixing?
(planet migration? star-disk interactions?)

Selection effects

Baumann et al. 2010:

No difference between planet-hosts and single stars

Stellar Li depletion and planets

Li in solar twins + analogs

Baumann et al. (2010) & Israelian et al. (2009) stellar parameters, ages and Li are consistent

⇒ Same age-Li trend without planet dependence Note few high-Li outliers, which are slightly evolved stars

Mass dependence

For a given mass, Li abundance decreases steadily with age until star leaves the turn-off Not predicted by standard stellar models

Analogy with metal-poor stars

Li along evolutionary sequence in NGC6397 Increase in Li when stars leave turn-off (Korn et al. 2006) Signature of atomic diffusion + turbulent mixing?

Diffusion, dilution, destruction & dredge-up

Other elements

Melendez et al. 2009, Science Nature ApJL: 11 solar twins + Sun observed with MIKE on Magellan:

R=65,000 S/N~450 ∆*T*_{eff}<75K ∆log*g*<0.1 ∆[Fe/H]<0.1

Precision stellar spectroscopy: ≤0.01 dex in [X/H], [X/Fe]

Signatures of planet formation

Melendez et al., 2009, ApJ Letters, 704, L66.

The Sun is unusual

Confirmation of trend

Re-analyzing previous studies

Why has not the trend been seen in previous studies? More diverse samples → too large uncertainties Ramirez et al. (2010): Solar analogs from literature

Metallicity dependence

Ramirez et al. (2010): Signature exists also in previous stellar samples but disappears at high [Fe/H] ⇒ Metallicity-dependence of planet formation: At low [Fe/H] only minority has planets but at high [Fe/H] most do?

Scenario

Sun: planet formation locked up refractories but less of volatiles during accretion phase Solar twins: less planet formation and thus more refractories than Sun

image are adopted from http://universtoday.com/

Meteorites

Similarities with trend seen for chondrites

Melendez et al., 2009, ApJ Letters, 704, L66.

Alexander et al. (2001)

Sun vs Cl chondrites

Terrestrial or giant planets?

How much dust-cleansed gas accretion is required?

Assume gas accretion once solar convection zone reached ≈ present size (~0.02 M_o): Refractories ~2*10²⁸ g ≈4 M_⊕

Rocky planets: ~8*10²⁷ g ≈1.3 M_{\oplus} Cores of giant planets: ≈30 M_{\oplus} ?

Characteristic temperature of ~1200 K only encountered at <<1 AU in proto-planetary disks

Time-scale problems

Pre-main sequence

Solution for helioseismology?

Solar interior composition is not the same as photospheric abundances Preliminary results: not enough...

Stars with/without giant planets

Analysis of solar-like stars followed with radial velocity monitoring (HARPS)

Fraction of stars resembling the Sun:

- \Rightarrow With hot Jupiters: ~0%
- ⇒ Without hot Jupiters: ~70%
- ⇒ Stars in general: ~20%

Close-in giant planets prevent long-lived disks and/or formation of terrestrial planets?

An ideal candidate for terrestrial planet searches

Galactic archaeology

Stellar abundances + kinematics to unravel the history of the Milky Way and its populations: Nucleosynthesis, IMF, SFR, infall/outflow, migration etc (see lectures by E. Tolstoy!)

- Nature of the first stars
- Evolution of the bulge
- The disks and their substructure
- Chemical enrichment of globular clusters
- dSph/UFD and MW accretion history

Galactic thin/thick disk

Galactic chemical evolution models w/ radial migration: Thick disk natural consequence of old stars from inner disk migrated to solar neighborhood

Classical Galactic chemical evolution models: Merger origin for thick disk?

Schönrich & Binney (2009)

Galactic archeology and planets

Reddy et al. (2006)

Planet signature larger!

Size of signature will depend on M_{CZ}, i.e. spectral type

Disk substructure and chemical tagging ∆(Thick-thin) ≈ 0.1 dex ∆(Thin) ≈ 0.01 dex?

Searching for solar siblings

Figure 1: schematic layout of the four-band HERMES spectrometer, showing the three dichroic beamsplitters, four VPH gratings and four cameras.

HERMES @ AAT 4m R=30k & S/N~100 spectra of 10⁶ stars for "*chemical tagging*" (2012-2017): ⇒ Reconstruct chemical, dynamical and SF history of Milky Way ⇒ Identify solar siblings

Observe >10,000 dwarfs @ R=50k and S/N>200 to search for planet signature!

images are adopted from http://www.aao.gov.au/

Summary

Lecture 1: Solar/stellar spectroscopy

- 3D stellar atmospheres highly realistic
- 3D/non-LTE spectral line formation possible

Lecture 2: Solar chemical composition

- New low solar C, N, O, Ne abundances
- Conflict with solar interior models

Lecture 3: Is the Sun unusual?

- Planet formation imprinted in abundances
- Complicates Galactic archaeology

Summary

- Solar chemical composition
 - New abundances for <u>all</u> elements
 - Low C, N, O and Ne abundances

Precision stellar spectroscopy

- Sun is unusual
- Signatures of planet formation

Galactic archeology

- Complicates finding solar siblings
- Planet formation as a mask

Recent publications

Solar chemical composition:

Asplund et al. (2009, ARAA) Melendez & Asplund (2008, A&A) Scott et al. (2009, ApJL) Asplund et al. (2009b, A&A) Sauval et al. (2009, A&A) Asplund et al. (2009c, A&A) Asplund et al. (2009d, A&A) Scott et al. (2009, A&A) Grevesse et al. (2009, A&A)

3D solar modelling:

Trampedach et al. (2009, A&A) Hayek et al. (2009, A&A) Pereira et al. (2009a, A&A) Pereira et al. (2009b, A&A) Pereira et al. (2009c, A&A)

Astrophysical implications

Melendez et al. (2009, ?) Ramirez et al. (2009, A&A) Serenelli et al. (2009, ApJL) Nieva et al. (2009, A&A) Schönrich et al. (2009, MNRAS) 3D analysis of <u>all</u> elements [OI] O+Ni C N O Na-Ca Fe-peak Heavy elements

New 3D solar model New 3D code Testing 3D models Solar granulation Center-to-limb variations

Is the Sun chemically unusual? solar twins Helioseismology Solar neighborhood Galactic chemical evolution

References (1)

- Alexander, Boss, Carlson, 2001: The Early Evolution of the Inner Solar System: A Meteoritic Perspective, Science, 293, 64-69
- Allende Prieto, Barklem, Asplund, Ruiz Cobo, 2001: Chemical Abundances from Inversions of Stellar Spectra: Analysis of Solar-Type Stars with Homogeneous and Static Model Atmospheres, The Astrophysical Journal, 558, 830-851.
- Anders & Grevesse, 1989: Abundances of the elements Meteoritic and solar, Geochimica et Cosmochimica Acta, 53, 197-214.
- Arpesella, C., et al. 2008: Direct Measurement of the Be7 Solar Neutrino Flux with 192 Days of Borexino Data, Phys. Rev. Lett., 101, 091302.
- Asplund, Nordlund, Trampedach, Stein, 1999: 3D hydrodynamical model atmospheres of metalpoor stars. Evidence for a low primordial Li abundance, Astronomy and Astrophysics, v.346, L17-L20
- Asplund, Carlsson, Botnen, 2003: Multi-level 3D non-LTE computations of lithium lines in the metal-poor halo stars HD 140283 and HD 84937, Astronomy and Astrophysics, 399, L31-L34.
- Asplund, Grevesse, Sauval, Allende Prieto, Kiselman, 2004: Line formation in solar granulation.
 V. Missing UV-opacity and the photospheric Be abundance, Astron. Astrophys. 417, 751–68.
- Asplund, 2005: New Light on Stellar Abundance Analyses: Departures from LTE and Homogeneity, Annu. Rev. Astron. Astrophys, 43, 481–530.
- Asplund, Grevesse, Sauval, 2005: The Solar Chemical Composition, in ASP Conf. Ser. 336, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, ed. T. G. Barnes, III & F. N. Bash (San Francisco, CA: ASP), 25.
- □ Asplund, 2008: The Shining Make-Up of Our Star, Science, 322, 51-52.
- Asplund, Grevesse, Sauval, Scott, 2009: The Chemical Composition of the Sun, Annual Review of Astronomy & Astrophysics, 47, 481-522.

References (2)

- Badnell, Bautista, Butler, Delahaye, Mendoza, et al. 2005: Updated opacities from the Opacity Project, MNRAS, 360, 458–464.
- Baraffe, Chabrier, 2010: Effect of episodic accretion on the structure and the lithium depletion of low-mass stars and planet-hosting stars, Astronomy and Astrophysics, 521, id.A44.
- **D** Barklem, 2007a: Electron-impact excitation of neutral oxygen, Astron. Astrophys. 462:781–788
- Barklem, 2007b: Non-LTE Balmer line formation in late-type spectra: effects of atomic processes involving hydrogen atoms, Astron. Astrophys. 466, 327–337
- Baumann, Ramírez, Meléndez, Asplund, Lind, 2010: Lithium depletion in solar-like stars: no planet connection, Astronomy and Astrophysics, 519, id.A87.
- Bensby, Feltzing, 2010: The Galactic thin and thick disks in the context of galaxy formation, Chemical Abundances in the Universe: Connecting First Stars to Planets, Proceedings of the International Astronomical Union, IAU Symposium, Volume 265, 300-303
- **D** Boss, 1997: Giant planet formation by gravitational instability, Science, 276, 5320, 1836-1839.
- Caffau, Ludwig, Steffen, Ayres, Bonifacio, et al. 2008a: The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmospheric models, Astron. Astrophys. 488, 1031–1046
- Caffau, Sbordone, Ludwig, Bonifacio, Steffen, Behara, 2008b: The solar photospheric abundance of hafnium and thorium. Results from CO5BOLD 3D hydrodynamic model atmosphe, Astron. Astrophys. 483, 591–598.
- Caffau, Maiorca, Bonifacio, Faraggiana, Steffen, et al. 2009: The solar photospheric nitrogen abundance. Analysis of atomic transitions with 3D and 1D model atmospheres, Astron. Astrophys. 498, 877–884.

References (3)

- Caffau, Ludwig, Steffen, Freytag, Bonifacio, 2010: Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere, Solar Physics, Online First (http://www.springerlink.com/ content/r6954j2463x57194/).
- Casagrande, Ramírez, Meléndez, Bessell, Asplund, 2010: An absolutely calibrated Teff scale from the infrared flux method. Dwarfs and subgiants, Astronomy and Astrophysics, 512, id.A54
- Casagrande, Ramírez, Meléndez, Bessell, Asplund, 2010: Teff and Fbol from Infrared Flux Method, VizieR On-line Data Catalog: J/A+A/512/A54.
- Charbonneau, Brown, Latham, Mayor, 2000: Detection of Planetary Transits Across a Sun-like Star, The Astrophysical Journal, 529, L45-L48.
- Chiappini, Romano, Matteucci, 2003: Oxygen, carbon and nitrogen evolution in galaxies, MNRAS, 339, 63–81.
- **D** CoachIngindians: http://www.coachingindians.com/
- Drawin, 1968: Zur formelmäßigen Darstellung des Ionisierungsquerschnitts für den Atom-Atomstoß und über die Ionen-Elektronen-Rekombination im dichten Neutralgas, Zeitschrift für Physik, 211, 404-417.
- Fabbian, Asplund, Barklem, Carlsson, Kiselman, 2009: Neutral oxygen spectral line formation revisited with new collisional data: large departures from LTE at low metallicity, Astronomy and Astrophysics, 500, 1221-1238.
- Goldberg, Muller, Aller, 1960: The Abundances of the Elements in the Solar Atmosphere, Astrophysical Journal Supplement, 5, 1.
- Gonzalez, 1997: The stellar metallicity-giant planet connection, Monthly Notices of the Royal Astronomical Society, 285, 403-412.
- □ González, Israelian, Santos, Sousa, Delgado-Mena, Neves, Udry, 2010: Searching for the Signatures of Terrestrial Planets in Solar Analogs, The Astrophysical Journal, 720, 1592-1602.

References (4)

- □ Grevesse & Sauval, 1998: Standard Solar Composition, SPACE SCIENCE REVIEWS, 85, 161-174, DOI: 10.1023/A:1005161325181
- Gustafsson, Edvardsson, Eriksson, Jørgensen, Nordlund, Plez, 2008: A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties, Astron. Astrophys., 486, 951– 970.
- Holweger and Muller, 1974: The photospheric barium spectrum: Solar abundance and collision broadening of Baii lines by hydrogen, Solar Phys. 39, 19-30.
- Hubble Space Telescope: http://www.stsci.edu/hst/
- Israelian, et al. 2009: Enhanced lithium depletion in Sun-like stars with orbiting planets, Nature, 462, 189-191.
- Johansson, Litzen, Lundberg, Zhang, 2003: Experimental f-Value and Isotopic Structure for the Ni I Line Blended with [O I] at 6300 Å, The Astrophysical Journal, 584, L107-L110.
- Johansen, Youdin, Mac Low, 2009: Particle Clumping and Planetesimal Formation Depend Strongly on Metallicity, The Astrophysical Journal Letters, 704, L75-L79.
- Korn, Grundahl, Richard, Barklem, Mashonkina, Collet, Piskunov, Gustafsson, 2006: A probable stellar solution to the cosmological lithium discrepancy, Nature, 442, 657-659.
- Kurucz, 2006: High Resolution Irradiance Spectrum from 300 to 1000 nm, arXiv:astro-ph/ 0605029.
- Lind, Primas, Charbonnel, Grundahl, Asplund, 2009: Signatures of intrinsic Li depletion and Li-Na anti-correlation in the metal-poor globular cluster NGC 6397, Astronomy and Astrophysics, 503, 545-557.
- Lodders 2003: Solar System Abundances and Condensation Temperatures of the Elements, The Astrophysical Journal, 591, 1220-1247.
- MARCS http://marcs.astro.uu.se/

References (5)

- Mayor & Queloz, 1995: A Jupiter-mass companion to a solar-type star, Nature, 378, 355-359.
- Melendez, Asplund, Gustafsson, Yong, 2009: The Peculiar Solar Composition and Its Possible Relation to Planet Formation, The Astrophysical Journal Letters, 704, L66-L70.
- Mihalas, Dappen, Hummer, 1988: The equation of state for stellar envelopes. II Algorithm and selected results, Astrophysical Journal, 331, 815-825.
- Neves, Santos, Sousa, Correia, Israelian, 2009: Chemical abundances of 451 stars from the HARPS GTO planet search program. Thin disc, thick disc, and planets, Astronomy and Astrophysics, 497, 563-581.
- Nordlund, Stein, Brandenburg, 1996: Supercomputer windows into the solar convection zone, Bulletin of the Astronomical Soceity of India, vol. 24, p.261
- Nordström, Mayor, Andersen, Holmberg, Pont, Jørgensen, Olsen, Udry, Mowlavi, 2004: The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ~14 000 F and G dwarfs, Astronomy and Astrophysics, 418, 989-1019.
- Pereira, Kiselman, Asplund, 2009a: Oxygen lines in solar granulation. I. Testing 3D models against new observations with high spatial and spectral resolution, Astronomy and Astrophysics, 507, 2009, 417-432.
- Pereira, Asplund, Kiselman, 2009b: Oxygen lines in solar granulation. II. Centre-to-limb variation, NLTE line formation, blends, and the solar oxygen abundance, Astronomy and Astrophysics, 508, 2009, 1403-1416
- Pollack, Hubickyj, Bodenheimer, Lissauer, Podolak, Greenzweig, 1996: Formation of the Giant Planets by Concurrent Accretion of Solids and Gas, Icarus, 124, 62-85.
- Ramırez, Melendez, Asplund, 2009: Accurate abundance patterns of solar twins and analogs. Does the anomalous solar chemical composition come from planet formation?, Astronomy and Astrophysics, 508, L17-L20.

References (6)

- Ramírez, Asplund, Baumann, Meléndez, Bensby, 2010: A possible signature of terrestrial planet formation in the chemical composition of solar analogs, Astronomy and Astrophysics, 521, id.A33
- Reddy, Lambert, Allende Prieto, 2006: Elemental abundance survey of the Galactic thick disc, Monthly Notices of the Royal Astronomical Society, 367, 1329-1366.
- Reddy, Tomkin, Lambert, Allende Prieto, 2003: The chemical compositions of Galactic disc F and G dwarfs, Monthly Notice of the Royal Astronomical Society, 340, 304–340.
- Rempel, Schüssler, Cameron, Knölker, 2009: Penumbral Structure and Outflows in Simulated Sunspots, Science, 325, 171.
- **D** Russell, 1929: On the Composition of the Sun's Atmosphere, Astrophysical Journal, 70, 11
- Schonrich, Binney, 2009: Origin and structure of the Galactic disc(s), Monthly Notices of the Royal Astronomical Society, 399, 1145-1156.
- Scott, Asplund, Grevesse, Sauval, 2006: Line formation in solar granulation. VII. CO lines and the solar C and O isotopic abundances, Astron. Astrophys. 456, 675–688.
- Scott, Asplund, Grevesse, Sauval, 2009: On the Solar Nickel and Oxygen Abundances, The Astrophysical Journal Letters, 691, L119-L122.
- Serenelli, Basu, Ferguson, Asplund, 2009: New Solar Composition: The Problem with Solar Models Revisited, The Astrophysical Journal Letters, 705, L123-L127.
- □ SOHO images: http://sohowww.nascom.nasa.gov/
- **D** Suess & Urey, 1956: Abundances of the Elements, Reviews of Modern Physics, 28, 53-74
- Takeda, 2007: Fundamental Parameters and Elemental Abundances of 160 F-G-K Stars Based on OAO Spectrum Database, PASJ, 59, 335-356.
- □ The Australian Astronomical Observatory: http://www.aao.gov.au/

References (7)

- Tolstoy, Hill, Tosi, 2009: Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group, Annual Review of Astronomy & Astrophysics, 47, 371-425
- Udry, Santos, 2007: Statistical Properties of Exoplanets, Annual Review of Astronomy & Astrophysics, 45, 397-439.
- Wyatt, 2008: Evolution of Debris Disks, Annual Review of Astronomy & Astrophysics, 46, 339-383.