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_Pistol Nebula

Pistol Nebula and Massive Star HST « NICMQOS
PRC97-33 « ST Scl OPO « D. Figer (UCLA) and NASA
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Eta Carinae
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P-Cygni Line Profile
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Observed wind line profiles

Resonance line-scattering
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Basic Mass Loss Properties

Mass Loss rate M p— 471'le‘2

Terminal speed Velocity law V(r)
V

(&0
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Massive-Star Mass L.oss
1. OB Winds v -10° —10-° Mo

r
—opt.thin 7 <1 v_ ~1000 — 3000ykm /s

2. Wolf-Rayet Winds . M
M~10"°-10"—=

—opt. thick 7, >1 v_ ~1000 — 3000%m / s
3. Luminous Blue Variable (LBV) Eruptions

-very opt. thick 7.>1 M ~10"° —1 M, X

yr
v.~50-1000km /s
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Q: What can drive such extreme mass loss??

A: The force of light!

— light has momentum, p=E/c
—leads to “Radiation Pressure”

—radiation force from gradient of P_ 4

— gradient 1s from opacity of matter

— opacity from both Continuum & Lines
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Continuum opacity from
Free Electron Scattering

Thompson Cross Section
O1n = 81/3 r 2= 2/3 barn= 0.66 x 10-2¢ cm?

2
GTh

K =1 =02(1+X)=034—"—
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Radiative acceleration vs. gravity

— h KVFV
gmd I J dv c
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Radiative acceleration vs. gravity
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Radiative acceleration vs. gravity

— h KVFV
gmd I J dv c
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Stellar Luminosity vs. Mass
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Basic Stellar Structure -> L ~ M3

cf. Lecture by Prof. Sugimoto
Hydrostatic equilibrium (I'<<1):

dP

gas

dr

=—P8
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Hydrostatic equilibrium (I'<<1):
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Basic Stellar Structure -> L ~ M3

cf. Lecture by Prof. Sugimoto
Hydrostatic equilibrium (I'<<1):

AP pT  pM M

— = — ~ ) ——
dr hg R R’ g R
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Basic Stellar Structure -> L ~ M3

cf. Lecture by Prof. Sugimoto
Hydrostatic equilibrium (I'<<1):

dP Vi
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Basic Stellar Structure -> L ~ M3

cf. Lecture by Prof. Sugimoto

Hydrostatic equilibrium (I'<<1):

dpP,,
P P8
Radiative diffusion:
dP_, F

drt C
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Basic Stellar Structure -> L ~ M3

cf. Lecture by Prof. Sugimoto

Hydrostatic equilibrium (I'<<1):

dPgaS B

P P8

Radiative diffusion:

dP., F T’ L

> 2 T 52
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Basic Stellar Structure -> L ~ M3

cf. Lecture by Prof. Sugimoto
Hydrostatic equilibrium (I'<<1):

T4

dpP,,

P P8
Radiative diffusion:
dby _F

dt ¢
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Basic Stellar Structure -> L ~ M3

cf. Lecture by Prof. Sugimoto

Hydrostatic equilibrium (I'<<1):

dpP,,

P P8
Radiative diffusion:
dby _F

dt ¢
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Basic Stellar Structure -> L ~ M3

cf. Lecture by Prof. Sugimoto
Hydrostatic equilibrium (I'<<1):

dP,
—=—pg r- 4
dr R
Radiative diffusion:
dP., F . R'T*
dt C KM
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Basic Stellar Structure -> L ~ M3

cf. Lecture by Prof. Sugimoto
Hydrostatic equilibrium (I'<<1):

dP

gas

dr

=—P8

Radiative diffusion:

dP

rad

F

drt C
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Eddington Standard Model (n=3 Polytrope)

observed
upper limit
from young,
dense clusters

........................................

Owocki & van Marle 2008, IAUS, 250, 71 Log M/Mg
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Humphreys-Davidson Limit
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Key points

e Stars with M ~ 100 M, have L ~10%L__ => near

Eddington limit!

* Suggests natural explanation why we don’t see stars

much more luminous (& massive)

o P.4> P, => Instabilities => Extreme mass loss
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Mass loss and stellar evolution:

Luminous Blue Variable (LBV) winds/eruptions

Wednesday, January 12, 2011



Mass loss and stellar evolution:
Luminous Blue Variable (LBV) winds/eruptions

Wednesday, January 12, 2011



Mass loss and stellar evolution:
Luminous Blue Variable (LBV) winds/eruptions

Wednesday, January 12, 2011



Mass loss and stellar evolution:
Luminous Blue Variable (LBV) winds/eruptions

Possible fates:

LBV = WR =>» SNibc
LBV = WR = GRB
BH

Pair Instability

Type lIn
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e But before trying to understand LBV eruptive mass
loss, let’s consider ways to get a steady, radiatively

driven wind.
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e But before trying to understand LBV eruptive mass
loss, let’s consider ways to get a steady, radiatively

driven wind.

* Key requirement 1s for Gamma to increase above

unity near the stellar surface.
e Two options:
— Assume continuum opacity to increase outward

— More naturally: Desaturation of line-opacity
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Steady Wind Acceleration

2
a T
4
Sound speed g = /P / p S:Tz0.0(H <1
\'o% M /R
Scale by gravity. .
Accel. @ = == |
dx
R _V
x=1-— - VT
r . esc
Kin. En.
Pot. En.

Escape En.
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Steady Wind Acceleration

2
a T
4
Sound speed g = /P / SZTzO.OOl <]
P V. M /R
If we neglect gas pressure, steady force balance is simply:
dv GM N
V_ - gm
dr r’ ‘
Scale by gravity.
dw
Accel. —=1-1
dx
R _V
x=1-—— =7
r Vesc
Kin. En.
Pot. En.

Escape En.
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Simplest example of radiatively driven wind

Zero sound speed limit (a=0) with constant “anti-gravity” [ > |

w =IT-1
Integrate with B.C. W(O) =0
w(x)=w_x

R 1/2
V(r)=Voo(1——j v, =yw v, = —-1v,

r

Note: Density independence leaves mass loss rate undetermined.
And ignores energy requirement (photon “tiring”’).
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The “beta” velocity law

R B
Empirical fitting law: v(r)=v_ (1 — _j
r

w(x)=w_x"

Dynamically requires a specific radial increase in opacity:

F(x)=1+w =1+2Bw_x*""
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Line-Driven Stellar Winds

e A more natural model 1s for wind to be

driven by line scattering of light by

electrons bound to metal 10ns

* This has some key differences from

electron scattering...
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Driving by Line-Opacity

Optically thin

[ ~Qr ~1000T

Owocki 2009, AIPC, 1171, 173
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Driving by Line-Opacity

Optically thin Optically thick

[ ~Qr ~1000T

Owocki 2009, AIPC, 1171, 173
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Optically Thick Line-Absorption
in an Accelerating Stellar Wind

Velocity
A
S\ S N JAG TS J\J o //
la,t s
A
:lSob: =Ven/ (dv/drx)
/.line l l >
v Radius
Wavelength
> L, <<R.
For stron 8ihin \
55 ~ ~ Vi Vi

Kp

optically thick ©thick T VY
Topdr widr oy

lines:

Wednesday, January 12, 2011



CAK model of steady-state wind

, _GM(1—F)+§L revv’

Equation of motion: VYV 2 2 72
r r-\ MQ

inertia gravity CAK line-force
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CAK model of steady-state wind

O<o<1
_ N 2 CAK ensemble of
i ) vV = — GM(I F) + QL S thick & thin lines
Equation of motion: 7 7 - —
r r-\ MQ
inertia gravity CAK line-force
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CAK model of steady-state wind

O<ax<1
2y 2 ’
,__GM(-T) QL[ riw’ [ akemembicof
Equation of motion: Vv = 7 7 =S
r r-\ MQ

inertia = gravity = CAKine-force
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CAK model of steady-state wind

O<a<1
N 2 v’ AK le of
,__GM(=T) QL[ rivw [* Cakementico
Equation of motion: VYV = 2 ) =
r r-\ MQ

inertia = gravity = CAKine-force

dcak = gravity
Mass loss ralte

— -1
. L 1_‘ o
M= — O
c\1-1
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CAK model of steady-state wind

Equation of motion: VYV

’

~

- GM(1-T) . OL|( r’vv

O<a<1

CAK ensemble of
thick & thin lines

r’ r | MO

inertia = gravity = CAKine-force

dcak = gravity
Mass loss rate

. L{ Oor
M= — O
c\1-1
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Velocity law
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CAK model of steady-state wind

O<a<1
N 2,7 AK le of
E ti £ i VV, ~ GM(I - F) + QL S ﬁlick gliﬁlil:lbliilgs
uation or motuon: 2) 9) L =
1 r r-\ MQ

inertia = gravity = CAKine-force

dcak = gravity inertia = gravity
Mass loss ralte Velocity law
I |
- L | v(ir)=lv [1-R. /r)’ B=08
L[ 2 (r)=v.(1—R, /1)
C 1 o r ~ V€SC
. : — _1+l/o L o=0.6
Wlnq M(.)mentum Mv_~0O e I
Luminosity law O~ 7
_ ZO.6L1 7 Q ~
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Point-star vs. Finite-disk

Point-star
approx. I N
% - g ~[.(dv/dr)®
Finite-disk
integration
In
g~ (dv_/dn)*

I
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Finite-disk reduction of CAK mass loss rate

w+l=f,Cw™ C~1/M"
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Finite-disk reduction of CAK mass loss rate

w+l=f,Cw™ C~1/M"

) __ rllaqy _
Mfd _fd* MCAK_
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CAK vs. FD velocit
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Effect of finite gas-pressure on CAK wind

2
(l—ijw’+1= JC. w’* SEa—zz0.0()l
W (1+om)”

esc
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Effect of finite gas-pressure on CAK wind

2
(l—ijw’+1= JC. w’¢ Ea—zz0.0()l
W 1+ om)” 1%

esc

Perturbation expansion of FD-CAK soln in s<<1 gives:

41— o a :
om = + ~+0.1| increases M

esc

~ 10%

dot
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Effect of finite gas-pressure on CAK wind

2
(l—ijw’+1= JC. w’¢ SEa—zz0.0()l
W 1+ om)” 1%

esc

Perturbation expansion of FD-CAK soln in s<<1 gives:

41— o a :
om = + ~+0.1| increases M

o V

esc

~ 10%

dot

a

2
y = — ~—
) Vl_a ‘/esc

o) 0.1| decreases Vinf ~ 10%

Wednesday, January 12, 2011



Summary: Key CAK Scaling Results

Ll/OC

Mass Flux: M —
1/05 |
ﬁ

Wind Speed: V_~V 8o

esc




How is stellar mass
loss affected by (rapid)
6)




Gravity Darkening

increasing stellar rotation —

F(©)~ g,(0)
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Effect of gravity darkening on
line-driven mass flux

Recall:
F(0)"” F(6) e.g., for

i (6) ~ __
8 (O g,(6) o=1/2
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Effect of gravity darkening on
line-driven mass flux

Recall:
(6) ~ F(0)"” _F*(6) e.g., for
840" g,(6) La=Li2
w/o gravity darkening,  (9) ~ l highest at

if F(©)=const. 8.+ (0) equator
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Effect of gravity darkening on
line-driven mass flux

Recall:
#1(6) ~ F(9)"” F*(0) e.g., for
840" g,(6) H=LZ
w/o gravity darkening,  (9) ~ l highest at
if F(©)=const. 8.+ (0) equator

w/ gravity darkening, m(0) ~ F(o) highest at
if F(0)~g..(0) pole
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Effect of rotation on flow speed

V.(6) ~ Vs (6) ~ /2.5 (6)
2 2 '
g.+(0) ~1—w" Sin"6
w=1
=0.
W= Q/chit ' x ? ’
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NE 5

5"

Smith et al. 2003, IAUS, 212, 236
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Smith et al. 2003
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Be stars

e Hot, bright, & rapidly rotating stars of mass ~ 3-10 Msun
e The ¢ e” stands for emission lines in the star’s spectrum

H Ho

Hydrogen
spectrum
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Be stars

e Hot, bright, & rapidly rotating stars of mass ~ 3-10 Msun
e The ¢ e” stands for emission lines in the star’s spectrum

H Ho

Hydrogen
spectrum

e Emission intensity split
into blue and red peaks
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Be stars

e Hot, bright, & rapidly rotating stars of mass ~ 3-10 Msun
e The ¢ e” stands for emission lines in the star’s spectrum

Hydrogen
spectrum

e Emission intensity split
into blue and red peaks

Intensity

7\0 Wavelengtil
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Be stars

e Hot, bright, & rapidly rotating stars of mass ~ 3-10 Msun
e The ¢ e” stands for emission lines in the star’s spectrum

Hydrogen
spectrum

e Emission intensity split
into blue and red peaks

2
g
* From Doppler shift of 1 E |
gas moving toward and Ao Wavelength
away from the
observer .
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Be stars

e Hot, bright, & rapidly rotating stars of mass ~ 3-10 Msun
e The ¢ e” stands for emission lines in the star’s spectrum

Hydrogen
spectrum

e Emission intensity split
into blue and red peaks

>
~
7
=
£
e From Doppler shift of E 3 " s
gas moving toward and Ao Wavelength
away from the e —
observer . e SRR N v
| ‘%f s
RN . - - R R

uu,.-.‘l.,,nd'.:-u-...il-_'lﬂ',,_rr""
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Be stars

e Hot, bright, & rapidly rotating stars of mass ~ 3-10 Msun
e The ¢ e” stands for emission lines in the star’s spectrum

Hydrogen
spectrum

e Emission intensity split
into blue and red peaks

>
~
7
=
£
e From Doppler shift of E 3 " s
gas moving toward and Ao Wavelength
away from the R ——eeeee——
observer . e = ot T S T
| ‘%f s
RN . - - R R

uu,.-.‘l.,,nd'.:-u-...il-_'lﬂ',,_rr""

e Indicates a disk of gas orbits the star.
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3 components of Be star circumstellar gas
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3 components of Be star circumstellar gas

gravity brightened poles
drive denser polar wind
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3 components of Be star circumstellar gas

gravity brightened poles
drive denser polar wind

equatorial Viscous Decretion Disk (VDD)
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3 components of Be star circumstellar gas

gravity brightened poles
drive denser polar wind

equatorial Viscous Decretion Disk (VDD)

eq. disk ablation flow
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VVolf-Rayet winds

 WR winds have MV_>L/c : 7

* Requires multiple scattering Praa = T?

for lines separated by AV <V_
%

(o)

T=—
AV
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VVolf-Rayet winds

 WR winds have MV_>L/c : 7

* Requires multiple scattering Praa = T?

for lines separated by AV <V_
%

(o)

T=—>
AV

Wednesday, January 12, 2011 Gayley et al. 1995, ApJ, 442, 296
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VVolf-Rayet winds

 WR winds have MV_>L/c . L

 Requires multiple scattering Praa = T_

= i

for lines separated by AV <V_
%

(o)

T=—>
AV

Gayley et al. 1995, ApJ, 442, 296
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mosir
テキストボックス
Gayley et al. 1995, ApJ, 442, 296


VVolf-Rayet winds

 WR winds have MV_>L/c . L

 Requires multiple scattering ¢« =T

= é/ﬁw

for lines separated by AV <V_
%

(o)

T=—>
AV

Gayley et . 1995, ApJ, 442, 296
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Wolf-Rayet Wind Driving  courtes

I “ W B, Radiative

acceleration

[ ) ‘ ‘
radius

| | |

pens W Opj:ity
| A
W* Flux

p 3 4
Uv log Wavelength
2011




Mdot increases with I

_4‘5 1 I I I :) " 1 I | I 1 I | I I I | | | I | 1 I

" 2o 7y 157 -
o U4 . .

B 1/10 lo i
~ 1/100 Z-
| —
~ -5.0 | ]
= | _
= -
= ] 1/1000 Zg -
55 | -

| | 1 I | 1 1 I | | | l | 1 1 I | 1 | I | 1 |
04 05 06 07 08 09 10

Lddington I'actor T,

Graefener & Hamman 2005
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Monte-Carlo models
Abbott & Lucy 1985; LA 93; Vink et al. 2001

Assume beta velocity law, use MC transfer through line list
to compute global radiative work Wrad and momentum prad

FREQUENCY REDSHIFT
°
d -
~—
r:/
e
—~e

/
MOMENTUM DEPOSITION
I_
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Monte-Carlo models

Then compute mass loss rate from: yas 2 W raa
3 VﬁSC + VEO
Wrad
log NOTE:
E\vind Global
not local
soln of EOM

] Lucy & Abbott 1993, ApJ, 405, 738

logM
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Line-Deshadowing Instability

¢ (x-u) ~ (x- (u+du) )

Owocki 2009, AlP, 1171, 173
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Line-Deshadowing Instability

¢ (x-u) ~ (x- (u+du) )

Owocki 2009, AIPC, 1171, 173

for A<L_,:
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Line-Deshadowing Instability

¢ (x-u) ~ (x- (u+du) )

Owocki 2009, AIPC, 1171, 173

for A<L_,: Instability with growth rate

=
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Non-linear structure for pure-absorption model

Direct force OCR 1988

gdir B

2500 DENSIT

t(x,r)”

Integral optical depth - / o Oj\ ﬂ
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1.8

5 § 8

2
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=
>
-
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z
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RADIUS (Ryg)
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- Line-Scattering in an Expanding Wind
o
-
o Backward Forward
o Scattered [Scattered
g Photons Photons
o //\\ =
> S 2
0 e d 4P Wind
I ¥ > .~ Velocity
0 .
o)
g AAAR, g V+v,,
o 2
e Ay V
+
g )\I-A)\.D ,,4 v-vth
3
9 o
g A
3
g
9 S
0 A
a =
I
< y 0
R, rsonic ’ ‘ Radius r
= R < r
Gayley & Owocki 1994, ApJ, 434, 684 L= iv7ar
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Diffuse Line-Drag

Owocki 2009, AIPC, 1171, 173

Wednesday, January 12, 2011


mosir
テキストボックス
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Time snapshot of wind structure vs. radius

Y ] N [ T M x| " i |
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Clumping vs. radius

| 2 °
' P diagnostics -
| overestimate M

' h " ) )

[ &4 Radial velocity v;
|J‘

W\ dispersion

disp ~—

Runacres & Owocki 2002, A&A, 381, 1015
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Runacres & Owocki 2002, A&A, 381, 1015


Turbulence-
seeded clump
collisions

Enhances V gisp
and thus X-ray
emission

Feldmeier et al.
1997
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Chandra X-ray line-profile for ZPup
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Cohen et al. 2010, MNRAS, 405, 2391 Wavelength (A)
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Cohen et al. 2010, MNRAS, 405, 2391


observer
on left

optical
depth

Cohen et al. 2010, MNRAS, 405, 2391
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Cohen et al. 2010, MNRAS, 405, 2391


Isovelocity contours

observer
on left

optical
depth

Cohen et al. 2010, MNRAS, 405, 2391
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X-ray emission line-profile

Increasing 7.

v

A=>
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Inferring ZPup Mdot from X-ray lines

2 Traditional mass-loss rate: .

: 83X 10¢M_Jjyr

4 \ '

e 3 ) s | |
> A I T4 P
g 0 | °

1 b |
2 *s * Cohen et al.2010 best fit:-

Noulth 3.5 X 106 M_ /yr
5 10 15 20

Wavelength ( A)

Wednesday, January 12, 2011



Extension to 3D: the “Patch Method”
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WR Star Emission Profile Variability

r DDE CI CIIEIE ’

WR140 X =
Lepine & *r MH’M

Moftat 1999

“r hl‘.ﬁll‘h‘hhi —
d mwm

i:Z Yo \
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emlsalon deviation frem lecal meqn
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Lepine &
Moffat 1999
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3D
“patch”

model

Dessart &
Owocki
2002

| patch size

~3 deg
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2D-H
+
1D-R
nr=1000

no=60
Ap=12deg

Dessart & A
Owocki 2003
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Dessart & Owocki 2005
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Porosity
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Porosity

Incident light

—_—

—_—
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Porosity

Incident light

—_—
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Porosity

« Same amount of material

* More light gets through

Incident light _ _
— » | ess interaction between

matter and light

—_—
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Porous opacity from optically thick clumps

<—.—> O .4 ~ [ [1—e]
l T, =Kp, ! = Kp@

“porosity length”

O l—e ™ K
K.=—4 — ~— .7, >>1
m, T, Ty
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clump size £ =0.05r £ =0.1r £ =02r

Porous
envelopes
h=0.5r

Porosity
length

h= 4 /fyg ™

vol. fill factor
fvolz( «g /L)3

=1/fa  h=2r
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clump size

envelopes

(4/L)3

fvol
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Super-Eddington
Contiuum-Driven Winds

mediated by “porosity”
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VY CMa IRC+10420
Massive, Luminous stars:

Several M, of circumstellar
matter resulting from brief

eruptions, expanding at _
about 50-600 km/s. P Cygni

- _—
o

;: .... . i .‘;.. . -. 3 b .

>, ST, L
SN1987A HD 168625 Sher 25 .
(courtesy P. Challis) (Smith 2007) (Brandner et al. 1997) Eta Car .
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Eta Carinae
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Eta Car’s Extreme Properties
Present day: | ?
Lyaqg =5 % 10°Lg M ~107°Mg /yr
Ltaq Vo =~ 600 km /s

U

U
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Eta Car’s Extreme Properties

Present day:
" . ~~ -3 A/ o
Liraqd & 5 X 10 "L ®© M~ 107" Mg / V1
~ LE4d Vo =~ 600 km/s

1840-60 Giant Eruption:

L rad ~ 2 0 X ].O 6 i o~ M ~ O b5 M O /\ r
Vi ~ 600km/s
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Eta Car’s Extreme Properties

Present day:
A~ 10~3 M/ .
L' rad ~ 5 X 1 0 0 L o *\[ ~ 1 O 4\[ O / \ 1
~ LgEqq Vo =~ 600 km/s

1840-60 Giant Eruption:

L rad ~ 20 X 10 2 L r’.“; M~ 0.5M o /\ I
Vo =~ 600 km/s

~ Liin = Mv2, /2

=> Mass loss 1s energy or “photon-tiring” limited
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Stagnation of photon-tired outflow

K 1V GM GM
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KEdd 2 R r
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04 - M Veic .
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Density after 0.0000E+00 seconds
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Photon Tiring & Flow Stagnation

van Marle et al. 2009, MNRAS, 394, 595
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mosir
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van Marle et al. 2009, MNRAS, 394, 595


Fluidized Bed
I ‘

Spiegel 2006
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S S
= \

Go, Thick wind
Low-density

High-density 3;
# clumps
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Monte Carlo results for
eff. opacity vs. density 1n a porous medium

Log(eff. opacity)

_2'5 A 1 A 1 A 1 A 1 A 1 A
-3 -2 -1 0 1 2 3

Log(average density)
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Monte Carlo results for
eff. opacity vs. density 1n a porous medium

Log(eff. opacity)

-2'5 ' l A l A ‘: A ’ 'S l A
3 2 1 0 1 2 3

Log(average density)
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Monte Carlo results for
eff. opacity vs. density 1n a porous medium

Log(eff. opacity)

151 blobs -
- opt.thin ‘
2.0 -
25 2 1 2 L 2 l 2 1 R L 2
-3 -2 -1 0 1 2 3

Log(average density)
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Monte Carlo results for
eff. opacity vs. density 1n a porous medium

Log(eff. opacity)

st blobs  blobs :
" opt.thin | opt. thick ‘
2.0 |
25 a 1 a L . l " 1 . L a
-3 -2 -1 0 1 2 3

Log(average density)
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Monte Carlo results for
eff. opacity vs. density 1n a porous medium

0.0

0.5

Log(eff. opacity)

-1.0

L~1/p

-1.5

blobs ~ blobs
opt.thin  opt. thick

-2‘0 —

-2'5 ' l A l A ‘: A l 'S l A
3 2 1 0 1 2 3

Log(average density)
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Monte Carlo results for
eff. opacity vs. density 1n a porous medium

“critical density

Pe_

0.0

0.5

Log(eff. opacity)

-1.0

L~1/p

-1.5

blobs ~ blobs
opt.thin  opt. thick

-2.0 —

-2'5 ' l A l A ‘: A ’ 'S l A
3 2 1 0 1 2 3

Log(average density)
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Power-law porosity
(¥
At sonic point: [ . (rg) =1] P |
\Ps
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Power-law porosity
( o
At sonic point: [ . (rg) =1] P |
\Ps
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Power-law porosity
( o
At sonic point: [ . (rg) =1] P |
\Ps

M = 47R;p.a
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Power-law porosity

4 o
Atsonic point: [ . (75) =1 Pe | = 1
\Ps
* L.  1i/a
M=—dnRipa ~Lor

ac
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Power-law porosity

At sonic point: [ " (ro)=I

Wednesday, January 12, 2011

( [0/
| P, =1
\Ps

L* F—l-l—l/OC




Power-law porosity

( o
Atsonic point: [ . (75) =1 Pe | = 1
\Ps /
* L. | 1i1/a
M=dnRipa ~Lor
ac
. L., — \-1+l/«
M cak = —; (QF)
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Effect of gravity darkening on

porosity-mediated mass flux

o M | F(Q) —1+1/ o
m = > ~
AR m(@) ~F (6)(8@7 (9)]
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Effect of gravity darkening on

porosity-mediated mass flux

o M | F(Q) —1+1/ o
nm= ~
A 7R> 1 (0) F(Q)(geﬂ (9)]

w/ gravity darkening, m(0) ~ F(o) highest at
if F(0)~g..(0) pole
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Effect of gravity darkening on

porosity-mediated mass flux

o M | F(Q) —1+1/ o
nm= ~
A 7R> 1 (0) F(Q)(geﬂ (9)]

w/ gravity darkening, m(0) ~ F(o) highest at
if F(0)~g..(0) pole

highest at
Va(0) ~ Yy (0) ~ (5 (6)  MEI
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Eta Carinae
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Summary Themes
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Summary Themes

e Continuum vs. Line driving
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Summary Themes

e Continuum vs. Line driving

e Prolate vs. Oblate mass loss
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Summary Themes

e Continuum vs. Line driving
e Prolate vs. Oblate mass loss

e Porous vs. Smooth medium
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End Lecture 1
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