Evolution, Mass Loss and Variability

of Low and Intermediate- 8 Stars




What are low and intermediate mass stars?

Io[g_L_ | 1| | I | M
Lo bol - - - .
. Defined by properties of late stellar evolutionary
A== M BN — ) stages
SRS Z
n A /;;_ .
o |, _Intermediate mass stars: ~1.9 < M/Msun < ~7
2w, S Develop electron-degenerate cores after core
| B 7 helium burning and ascending the red giant
4/ 1+ branch for the second time i.e. on the
‘" 7 Asymptotic Giant Branch (AGB).
L ///),, -4
3 f,.«/ Low mass stars: M/Msun < ~1.9
i 7 7 Develop electron-degenerate cores on leaving
,; the main-sequence and ascending the red giant
2 i branch for the first time i.e. on the Red Giant
i i Branch (RGB).
1 S '
i e 8 15M, ‘};f
: 13M, "
Z =0.02 1_,5%’ 4 4
ok
1™, .
B 04 07 09 BO B1 B2 B3 BS B8 ADAZ AT F‘:-EE:G‘:KD K4 3kl
s | ; I ! | II | f | II . | lr | II I ]I I Il | | .
47 46 45 44 43 42 41 40 39 38 37T 36
log Teff

Maeder & Meynet 1989



Stages in the evolution of low and intermediate-mass stars
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Stellar evolution and surface enrichment
The Red giant Branch (RGB)

e Hydrogen burns in a shell around an electron-degenerate He core, star evolves to
higher luminosity.

e First dredge-up occurs: The convection in the envelope moves in when the stars is
near the bottom of the RGB and "dredges up" material that has been through
partial hydrogen burning by the CNO cycle and pp chains.

M= Z={.02

From John Lattanzio



But there's more: extra-mixing

What's the evidence?
Various abundances and isotopic ratios vary continuously up the RGB.
This is not predicted by a single first dredge-up alone.
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Possible sources of extra-mixing

e Rotation-induced mixing

e Magnetic fields

e Internal gravity waves

e Thermohaline mixing associated with the reaction *He(*He,2p)*He

Thermohaline mixing is currently favoured (e.g. Angelou et al. 2010), perhaps with some
modification by rotational-induced mixing (e.g. Charbonnel and Lagarde 2010).



How does thermohaline mixing work?

The reaction "He("He,2p)*He is unusual: it produces 3 particles from 2, thus reducing the
molecular weight (and it provides extra particle energy as the reaction is exothermic).

The reacting gas expands, its density is lower than the surrounds, it rises and cools due to
expansion until in density equilibrium with the surrounding (higher molecular weight)
material. Thereafter, the rate of thermal diffusion into the blob governs its further rise.
Named by analogy with salt (haline) fingers in the ocean.

Requirements: sufficient "He, temperatures hot enought to burn *He, and zero radial

abundance gradient.
Where does it occur: outer edge of the H-burning shell when it burns into the envelope

material homogenized and enriched in 3He by first dredge-up.
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Comparison of thermohaline mixing models to observations of M3 RGB stars
Angelou et al. (2010)
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The AGB - from the RGB via core-helium burning
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Origin of the term AGB
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Globular cluster M3 (very old, Population II)
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Giant Branch (RGB) asymptotically
In old stellar systems.

The Red Giant Branch (RGB) is
much more populous than the
AGB.

Generally, AGB is used to refer
to red giant stars beyond core
He burning, and with electron
degenerate cores burning H and
He in shells.
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Structure of an AGB star

- TP-AGB Star
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The early-AGB (or EAGB); before the onset of Thermal Pulses
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Getting nuclear-processed material to the stellar surface
The early-AGB (or EAGB)

He-shell is burning continuously
H-shell is dormant

2"d dredge-up

Dredged-up material (He, N) is transported to the stellar surface by convection.
It can then be ejected via the stellar wind.

2"d dredge-up is only important for M > ~4 Msun.

He, N are enriched at the surface (CNO cycle converts most CNO to N).

M=f Z=0.02

10021 1.004x1 1.000x1 1.008x10%
Time “'M] W John Lettenziy 2001

From John Lattanzio



The Thermally Pulsing AGB
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(b) the pulse luminosity Ly, ; and (c) the total luminosity at stellar surface.

Thermal Pulses
(also known as Helium Shell Flashes)

This behaviour is due to the
He-burning shell igniting in
an episodic fashion.

It is extinct most of the time and

H-burning supplies the stellar luminosity
between flashes.

Straniero et al (1997)
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Red: H-burning luminosity
White: Total surface luminosity

H-burning is the main luminosity source over a whole cycle

Multiple flashes occur in the He-burning shell in early thermal pulse cycles



Direct evidence for the existence of Thermal Pulses (He Shell Flashes)

Period changes in Mira variables
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Period changes are so rapid that they

are only explained by the rapid L change
at a He Shell Flash
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Getting nuclear-processed material to the stellar surface

3" dredge-up on the Thermally-Pulsing AGB (TP-AGB)

M=f Z=(.02

From John Lattanzio

H-shell burns outward most of the time
He shell burns in flashes

Envelope convection dredges up C-enriched matter to the surface

This can lead to the formation of Carbon Stars



More evidence for the existence of Thermal Pulses (He Shell Flashes)

The existence of Carbon Stars
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Testing models for 3@ dredge-up: the C star
luminosity function.

Full calculations have usually failed to
reproduce the observed C-star luminosity
function — the depth of 3" dredge-up is never
deep enough. This requires an artificial
“overshoot” at convective boundaries (which
would occur naturally in a full 3-D convection
calculation). Failure of simple convection
theories is a recurring theme in AGB star
studies.

There are many “synthetic AGB calculations”
e.g. Marigo et al (2008).
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Figure 5. Theoretical fits to the SMC CSLE. The histogram is observational
data taken from Groenewegen (2004). The unadjusted theoretical model
isolid line) reproduces the shape of the lumincsity function well, but it is
too bright by almost | mag. If the minimum core mass required for TDUP
is reduced by 0.06 M- (dashed line) then the CSLF is well reproduced.
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Model C stars are too bright.

Stancliffe, lzzard & Tout (2005)



S otars — AGB stars with very enhanced s-process abundances (and C/O ~ 1)
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Average binding energy per nucleon (MeV)

Jess

o MAKING s-PROCESS ELEMENTS

%6 Fe is the most stably bound nucleus.
Heavier elements can not be produced
by thermal nuclear reactions.

They are created by neutron addition to
elements similar to Fe (no electrostatic
repulsion):

s-process: slow neutron addition
r-process: rapid neutron addition (in SN)
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How to build stable nuclei by neutron addition
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Neutron sources - at He burning temperatures

13C(0(,n)160

2’Ne(a,n)*Mg

But how is a significant '*C abundance obtained?
It is normally mostly burnt to '*N in the CN cycle.
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From Amanda Karakas

22Ne comes from burning '“N (left over from the CNO cycle)
"“N(a,y)"°F(,B+v)"®O(a,y)**Ne

22Ne(a,n)*®Mg requires higher temperatures than those
found during He burning in lower mass stars < ~4 Msun.



Iben & Renzini (1982) (see Herwig 2005 for more recent calculations)
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mass

Small amount of H mixed
down to C-rich region
(Iben & Renzini 1982)
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AGB stars can produce heavy s-process elements.

This is because of the repeated application of neutron fluxes
to elements that are becoming heavier with each application.

In the cores of massive stars, s-processing also occurs, but
with only a single application of a neutron flux, only light s-process
elements are made.



Hot Bottom Burning - a source of primary "“N.
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@® Wood, Bessell & Fox (1983) noted that massive (M > 4 Msun), luminous AGB stars
were not C stars, even though they had s-process enrichments (and hence were
undergoing 3™ dredge-up)

@® Smith & Lambert (1989) showed these stars were Li-rich

@® Garcia-Hernandez et al (2006) confirmed the s-process enrichment

@® McSaveney et al (2007) found N enrichments by a factor of ~10.



Hot Bottom Burning

In AGB stars with M > ~3-4 Msun, the envelope convection
extends down to the H-burning shell. Thus the whole envelope
IS subject to H-burning by the pp-chains and the CN cycle
(Scalo, Despain & Ulrich 1975).
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Li production during Hot Bottom Burning

Cameron-Fowler Beryllium Transport Mechanism

= Li(p,oy¥He =PPII

YHe (0,y) "Be (Bv) Li
Be (py) “B(BY) 3Be (0)*He = PPIIT

Convection must carry the ‘Be away from the H-shell to cooler regions
before PPI or PPIII can destroy “Li or 'Be.



Carbon down by a factor ~5

Nitrogen up by a factor ~10
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larger than can be produced
by CN cycling of pre-existing
C + N nuclei — require Third
Dredge-Up + HBB



Summary of surface enrichments in AGB stars

1. Early AGB => 2"d dredge-up, He and N enrichment (M. > 4 Msun)
2. Thermally pulsmg AGB:3 dredge-up => C enrichment (C stars)
3. * : heavy s-process elements

4. Hot-bottom burning => N + L enrichments



Evolution of Extremely Metal Poor (EMP) stars of low and intermediate mass

Currently of interest due to discovery of EMP stars with variable enhancements in C, N
and s-process elements.

In these stars:

e The convective zone above the He burning layer during either the He core flash or
He shell flashes can extend upward to H-rich layers bringing H into the hot He
burning region and liberating large amounts of energy (dual flash) and potentially
bringing C, N and s-process elements to the surface (Fujimoto et al. 1990; Hollowell
et al. 1990).

e He shell flashes may be too weak for third dredge-up to occur.

Behaviour varies with mass and metallicity in a complicated way (modelling is difficult).
Recent studies are given in Lau et al. (2009) and Suda & Fujimoto (2010).



The Dual Core Flash
(also called Helium Flash Induced Mixing
or Helium Flash-Driven Deep Mixing)

Contact of core flash driven convection with H-rich material

0.6
- HeCZ hraachew
c _ H-Ex Core
D051 )
=
E - Start of post-DCF dredge-up
0.4t -
M = 1.0 Mgyn
0.3 / [Fe/H] = -6.5 -
He core flash driven /: Mo Dual Core Flash ]
convection o
012 I_ I [ 1 [} 1 I L 1 1 1 I 1 [ L 1 I. 1 [ 1 [ I. il 1 1 1 I 1 1 [ 1 l l._
-05 0.0 0.5 1.0 1.5 21 2.5

Time (kyr)

Campbell & Lattanzio (2008)



The complicated M and [Fe/H] dependence of AGB star evolution
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THE END (stellar evolution and surface enrichment)
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