- _-=W
Hakubi

e) L)

A r oo

Chapter O
Advertisement

. T

The Hakubl Center, Kyoto Unlver5|ty

Since 2010

 Unique, long-sighted, young researchers
wanted from all the world, to save the science

* Natural Science, Social Science, Engineering... all OK
e hire 20 researcher / year, 5 years position

e Salary of Assistant Prof. / Associate Prof. + research funding
e No mid-career assessment & lay-off

* No education duty

e No PhD required to apply

No tenure track

_—___W
Hakubi
N (1

Me—

Paraiso project

--- a code generator for partial differential
equation solvers

http://www.paraiso-lang.org/wiki/

Takayuki Muranushi @nushio

Assistant Professor at The Hakubi Center,
Kyoto University (2010-2015)

http://www.paraiso-lang.org/wiki/�

B e e e

Index

1. The goals of Paraiso

2. Previous studies on code generations and
autotuning

3. Previous studies on code generations for
GPGPUs

4. The design of Paraiso
5. Paraiso 2008, the Prototype

Chapter 1. The goals of

Paraiso

PARallel Automated Integration Scheme Organizer

Input: Discretized Algorithms for solving Partial
Differential Equations(e.g. Godunov scheme,
NSSB scheme), in mathematical notations

Output: Implementations on Distributed, Manycore
Machines.

N I S
Target Problem :
Partial Differential Equations,

Explicit Solvers, on Uniform Mesh

General Relativity

. M Radiative Transfer
Hydrodynamics (Relativistic)

e combinations of these equations
e combinations with chemistry etc..

S e
Partial Differential Equations,

Explicit Solvers, on Uniform Mesh

From computational point of view:

 They are d-Dimensional, real-number cell
automata.

 The state of each cell is a tuple of real numbers.

 The state of the cell at generation (n+1) is defiend
as function of the states of its neighbor cells at
generation (n).

N-th generation n+1 -th generation

R P R ak b

Paraiso

e is not a collection of codes.
* is not also a glue to paste codes.

e is atool for implementing one code.

Why | want it

R T .
Hakubi

D]

1)

M —

 because it’s getting hard to write simulation
codes today

* it’s even harder to optimize them

R —— T TS e——_—_ e -_._W
- SE

Target Hardware:

‘GRAPE-DR

g

-

N T e

What a programmer should know

e algebraic concepts

e physical equations

e time integration methods

e space interpolation methods
e data structures

e optimization techniques

e and hardware designs

T S "W
algebraic concepts

scala rs, vectors, tensors...

akx_ux_p=akxx_p*gixx_p
+akxy_p*gixy _p +akxz_p*gixz_p
aky_ux_p=akxy p*gixx_p
+akyy p*gixy p +akyz_p*gixz_p
akz_ux_p=akxz_p*gixx_p
+akyz_p*gixy_p +akzz_p*gixz_p

k . Jk akx_uy_p=akxx_p*gixy_p
= . }/ +akxy_p*giyy_p +akxz_p*giyz_p
J aky uy p=akxy p*gixy p
+akyy p*giyy_p +akyz_p*giyz_p
akz_uy_p=akxz_p*gixy_p
+akyz_p*giyy p +akzz_p*giyz_p
akx_uz_p=akxx_p*gixz_p
+akxy_p*giyz_p +akxz_p*gizz_p
aky _uz_p=akxy_p*gixz_p
+akyy p*giyz_p +akyz p*gizz_p
akz_uz_p=akxz_p*gixz_p
+akyz_p*giyz_p +akzz_p*gizz_p

. 4 rW

physical equations

Hydrodynamics, Magneto-hydrodynamics, ...
The numerical algorithm ()
Riemann solvers

additional physics (multifluid, coupling with
chemistry etc...)

Which variable to take (conserved, primitive,
surface integral)

time integration methods

1st order in time

2nd order in time
e FORCE method, etc...

4th order in time
and so on...

Symplectic ... (If you start from a Hamiltonian)

space interpolation methods

plecewise constant

piecewise linear

e Total Variance Diminishing....

piecewise parabolic

e Shock capturing
WENO....

o ==
data structures

oor Register
y | AngE S
Functional
Unit Usage
Core Blocking Thread Blocking Register Blocking

Parallelization

S
N

z

| @\y(unit stride) C

cX

* Allows for domain » Exploit caches shared * Loop unrolling in any of
decomposition and among threads withina the three dimensions
cache blocking core -Makes DLP/ILP explicit

Z 7z

Morton ordering

from Datta. 2009

T i o

g '-'W'7

optimizations

= to change the implementation without changing the meaning

Less computation? Less storage?
for(;; for(;; 1
f[i] = calc_f(a[i], a[i+1]); fO = calc_f(a[i-1], ali]);
} f1 = calc_f(a[i], a[i+1]);
for (;;{ b[i] += f1—fO0;
b[i] += f[i] — f[i-1]; }

S e
optimizations

= to change the implementation without changing the meaning

Array of Structure (AoS) Structure of Array (SoA)
MXYZmXyzmxyzmxyz mmmmmmmmmmmmmmmm
MXyZmXyzmxyzmxyz XOOOOOOXKNK
MXYZMXYZMXYZMXyZ YYYYYYYYYYYYYYYY

MXYZMXYZMXYZMXYZ 2222722272272 227227

N I R

optimizations

= to change the implementation without changing the meaning

Suppose a mesh hydro algorithm that needs to
communicate 2 neighbor cells per generation

<Reduced Storage Access Reduced Storage Space—>
N-th generation
n-th generation _ :
n-th generation S EEEEEEC
EEEN EEEN
SEENEE TN EEEEEETE
EEEEER
sync
EEEEER "HEEEEET
EEEEER .
n+1 -th generation EEEEEE
n+2 -th generation

n+1 -th generation

Even more, a single solver can contain both optimization. B

e.g. the former for inter-node communication, the latter for the scratchpad §
T P e B A TR Y PRI L R

other optimizations

use SIMD instructions e use of accelerators
multicore e use of scratchpads
cache awareness e use of pinned memories

NUMA awareness
padding

common subexpression
eliminating

— _—— '-‘“'—W?
==

-

ﬁardware designs-individual chips

EIEEVIEEIEE HERE §I§§|§
i g L i bl
AMB | | 4MB 4MB | | AMB F] E E E E E E
cAed) e i1 |3l 1|41 e
el |8 2t g b3 1)
=i BMB shared S| | £ |2m8 victim
10.66 GBie 10.86 GBI L3 SRI xbar
TT T
I MCH (4xf4b controllers) I | JwB4b controllars I ImmmE I
2133 Gaistroad) |[[| J11] 10.66 B TTT TT
T 1]] 25668 | | 10sscas [[10sscas
6 x 1066MHz 6 x 1066MHz
| Ll i I | Cmonie I |samnz DDR2 mm.ts] |66?Mrlz DOR2 ansl

Intel Clovertown Intel Nehalem AMD Barcelona

T &|§|§|§|§|§3§|

PrC | PPC | PPC | PPE
450d | 450d | 450d | 4804

6.8 GB/s (mach) HEBEBEEER ;E;;;;;;
= Creaspar i .
ol

anoop fMlar (WT L1%) 'wmn] [-m.ﬂ.. EH ‘.'!H'aH-‘I |‘N!EJH.\

L] w8 Brared LZ 0w | | =0 amm L2118 wiy)

4 Gilln (mach) | (&b imieriegved) | a3 ‘T grlegver) |
BAIB. B-way Shared L3 4 Gonsesncy s T T 4 Gonenency Hubs
o o 201280 contratens 241280 ontrollers

T 1w
2133 Gas || |[1066 cas 2133 cas || [1066 Gavs

= e from Datta. 2009
IBM Blue Gene/P Sun Niagara2

Cell B.E. MagnyCours

20126 conirollers

GTX 295

swwComplex Storage Hierarchies

GPU
Tsubame 2.0 as example CPU
Single node ghared

2.4? X 10%*flops

L2

6.1 X 10% Byte/s

L3]
1.3 X 1013 Byte
3.4 X 10%° Byte/s 1 X 1014 Byte/s

7.6 X 1013 Byte

GPU®D)
e iy

- %>
RARD
| |

| | AE1
AE!): (4GBx6) + (8GBx3 <: 1.4 X 1013 Byte/s :>
+ 2GBx3) 7
CPU : Westmere EP x2 communication
GPU : Tesla 2050 1,,6.6 X 10!t Byte/s
(515Gflops + 3GB) x3 15
W {5 : Infiniband QDR 55D 7.0? X 10" Byte
10GB/s

O—AI)LT4RX%:SSD x2
RAIDO (460MB/s read)

DISK

The codes must be

e Memory Hierarchy Aware
 Heterogeneous, in the future.
=write same algorithm for several hardware

 Anyway, we need to re-write codes every time
the dominant hardware change

- _— -
\ \d n
: RwE estmere
\ core
Las
= '
45nm integrated

graphics & integrated
memory controller

Programming is to choose

algebraic concepts
physical equations

time integration
methods

space interpolation
methods

data structures
optimization techniques
and hardware designs

tensors, its symmetry...
HD| MHD, GR, ...

1st order{an order,] 4th
order, more...

1st, an,TVD, Shockl|..

AoS, distribution,
communication timing...

CPU, what next, ...

Modern Parallel Programming is like this

The amount of programs you write in your life
is the product of various factors

*eo@@

| want it like this

Specify each of the sufficient knowledge modules,
and programs like above are automatically

() B

S e
What a code generator aims for

Generally you write Ny X N
lines of code

X Nog X Nipe X Ny

math

You find a bug / improvement and want N, = N, + 1; then
you need to re-write N X N__ X I XN _ XN, .. lines

math

With code generator you only have to write

Ni+ Noaih + Neg + Nie + Ny lines

You want N, = N, + 1; then just add 1 line

You can concentrate on physics

 The purpose of this project is to desigh a high-
level language for computer simulations on
supercomputers as well as today’s advanced
personal computers. A language to describe
the knowledge on algebraic concepts, physical
equations, integration algorithms,
optimization techniques, and hardware
designs --- all the necessaries of computer
simulations in abstract, modular, re-usable
and combinable forms.

. 4 rW

goals of Paraiso project

e \We can write faster, as well as execute faster.

 We can give computers sufficient yet simple
instructions. They do all the lengthy works.
1. write a code.

2. Wwrite various versions of the codes and
benchmark.

e \WWe reach Paraiso.

N T e . s
' Hakubi

m— \—I—'

Me—

Chapter 2.
Previous studies on code
generations and autotuning

B e T

FFTW

e Fastest Fourier Transform in the West.
e “FFTW's performance is portable”

 based on a code generator that can generate
various FT codes. FFTW performs automated
benchmarks and figure out the best
implementation. The code generator is written
in OCaml.

e Matteo Frigo and Steven G. Johnson, "The Design and Implementation of
FFTW3," Proceedings of the IEEE 93 (2), 216—231 (2005).

A key difficulty in implementing the Cooley-Tukey FFT is 8
that the n, dimension corresponds to discontiguous inputs j;
in X but contiguous outputs k; in Y, and vice-versa for ns.
This is a matrix transpose for a single decomposition stage,
and the composition of all such transpositions is a (mixed- 4 4
base) digit-reversal permutation (or bit-reversal, for radix-2).
The resulting necessity of discontiguous memory access and 2 2 2 2
data re-ordering hinders efficient use of hierarchical memory
architectures (e.g., caches), so that the optimal execution order 1)1 11 11 1)1
of an FFT for given hardware is non-obvious, and various
approaches have been proposed.

[. INTRODUCTION

FTW [1] is a widely used free-software library that
computes the discrete Fourier transform (DFT) and its

various special cases. Its performance is competitive even with How does one construct a good plan? FETW’s strategy is to
vendor-optimized programs, but unlike these programs, FFTW measure the execution time of many plans and to select the best.
is not tuned to a fixed machine. Instead, FFTW uses a planner Ideally, FFTW’s planner should try all possible plans. This ap-
to adapt its algorithms to the hardware in order to maximize proach, however, is not practical due to the combinatorial explo-

sion of the number of plans. Instead, the planner uses a dynamic-
programming algorithm [4, chapter 16] to prune the search space.
In order to use dynamic-programming, we assumed optimal sub-
structure [4]: if an optimal plan for a size /' is known, this plan is

performance. The input to the planner is a problem, a multi-
dimensional loop of multi-dimensional DFTs. The planner
applies a set of rules to recursively decompose a problem into

simpler sub-problems of the same type. “Sufficiently simple” still optimal when size V is used as a subproblem of a larger trans-
problems are solved directly by optimized, straight-line code form. This assumption is in principle false because of the different
that is automatically generated by a special-purpose compiler. states of the cache in the two cases. In practice, we tried both
This paper describes the overall structure of FFTW as well as approaches and the simplifying hypothesis yielded good results.

the specific improvements in FFTW3, our latest version.

e S s e T
~genfft — domain specific language to
describe DFT solvers and plans

=
E
4

* Phil Wadler has many well written papers about monads. See
* http://om.bell-labs. com/om/cs/who/wadler/

*J
* yanilla state monad *
expr'ml ;udule StateMonad = str'uit
let returnM x = fun s -> (%, 5)
type expr =
| Num of Number.number let (=) = fun m k -»

NaN of transcendent fun s ->

Plus of expr list let (a', s') =m s

Times of expr * expr in let (a'', s"") =ka' s’ monad.ml|

CTimes of expr * expr in Ca'’, s"°)

CTimes]) of expr * expr (* CTimes] (a, b) = conjCa) * b *)
Uminus of expr

Load of Variable.variable

Store of Variable.variable * expr

|
|
|
|
|
| let (=) = fun m k -=
| m »»= fun _ -»> k
I let rec mapM f = function
O -= returnM []
la:: b -»
fas=funa' -»
mapM £ b >>= fun b' -»
returnM Ca' :: b')

let runM m x initial_state =
let (a, _) = m x initial_state
ina

let fetchState =
fun s -» s, §

let storeState newsState =
fun _ -> (3, newState
end

simd.ml

(Uminus (Times (NaM I, b)) :: ¢ :: d -» op2 "VFNMSI" [b] (c :: d)

€ :: (Uminus (Times (NaM I, bJ)) :: d -» op2 "VFNMSI" [b] (c :: d)
(Uminus (Times (NaM CONJ, b}J) :: € :: d -» op2 "VFMMSCOMI" [b] (c :: d)
€ :: (Uminus (Times (NaN COMJ, bJ2D :: d -» op2 "VEMMSCONI" [b] (c :: d)
(Times (MaWN I, b)) :: ¢ :: d -» op2 "VFMAI" [b] (c :: d)

€ :: (Times (NaN I, b)) :: d -» op2 "VEMAL" [b] (c :: d)

(Times (MNaWN CONJ, b)) :: (Uminus <) :: d -» op2 "VFMSCONI" [b] (c :: dD
(Uminus) :: (Times (NaN CONJ, bJ) :: d -» op2 "VFMSCOWI" [b] Cc :: d
(Times (NaN CONJ, b)) :: ¢ :: d -» op2 "VFMACONI" [b] Cc :: d)

€ :: (Times (NaN CONJ, b)) :: d -» op2 "VEMACOWI" [b] Cc :: dD

(Times (NaN _, b)) :: (Uminus c) :: d -> failwith "VFMS NaN"

(Uminus <) :: (Times (NaM _, b)) :: d -»> failwith "VEMS Nal”

(Uminus {Times {a, b)) :: ¢ ::
¢ o (Uminus (Times (a, b)) ::

-> op3 "VFNM5" a b (c :: d)

d
d -» op3 "VFNMS" a b (c :: d)
d
d

(Times (a, b)) :: (Uminus ¢ :: -> op3 "VFM5" a b (c :: negate d)
(Uminus <) :: (Times {a, b)) :: -= op3 "VFM3" a b (c :: negate d)
(Times (a, b)) :: ¢ :: d ->op3 "VFMA" a b (c :: d)

¢ :: (Times (a, b)) :: d -=op3 "VEMA" a b (c :: d)
(Uminus a :: b) -= op2 "VSUB" b [a]

(b :: Uminus a :: &) -= op2 "VSUE" (b :: &) [a]

(a :: b) -> op2 "VADD" [a] b

O -> failwith "unparse_plus"

e e e ETTI

SPIRAL

e aseries of project to generate
software/hardware for linear transforms, most
notably the discrete Fourier transform (DFT).

Markus Plschel, Franz Franchetti and Yevgen Voronenko
“Spiral”

to appear in Encyclopedia of Parallel Computing, Eds. David
Padua, Springer 2011

Puschel et al. “SPIRAL: Code Generation for DSP Transforms”
PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

The possibly most famous transform is the DFT defined by the n x n matrix

DFT, = [w:if Wn = s_zrif”, i=+—1.

]Dikf{n!

Other examples include the discrete Hartley transform,
DHT,, = [cos(2mké/n) + sin(2mkE/n)]g<p son s
the discrete cosine transform (DCT) of type 2,

DCT-2, = [cos(k(£ + %]?rfﬂ,]]

D<kf<n’?
DFT, = (DFT.&[,)T"%(I, @ DFT,,)L, (Cooley-Tukey FFT) n = km
DFT, = V,YDFT.®[,)([@ DFT,.)V,, (Prime-factor FFT) n = km, ged(k,m) =1
DFT, = W/ YI VEDFT,) E, (I, &DFT,_)W,, (Rader FFT) n prime
DFT, = B.D, DFT,, D, DFT,, DB, (Bluestein FFT) n > 2m
DFT. = P/, (DFT2m @ (i1 ®: C2m rDF T2, i 2¢)) (RDFTax ®1m), n = 2km
RDFT. = (P, ® I2) (RDFT2m @ (Ii—1 ®i D2m rDF T2 i/01)) (RDFTo ®Im), n=2km
rDFTw. = L3 (Ie ®: rDFTom iouysi) (PDFTa2iw ®1m) n = 2km

Table 2: A selection of breakdown rules representing algorithm knowledge for the DFT. rDFT is an auxiliary trans-
form and has two parameters. RDF'T is a version of the real DFT.

DFT,, — ((DFT,,®L)T7"(I,®DFT,)L ")
\-—nv-—-l’ W I’

T

smp(p,p) smp(p,p)

— (DFT,®L) T, (I,®DFT,) L3"
. e ~—

L™ -

SmP?P:F‘J smp(p.) smp?p,p'j smp (P, L)

= ((LyP @ L) 1,) (1, ® (DFT, @1,,)) ((L;”P ® L) ® 1)
17 (1, @ (Ljp ® DFT,)) (5 ® LT3/ (L5 © L) © 1)

m/p

~ SPL-domain specific language to SE

describe DSP transforms

structured. To exploit the structure of the DSP transforms,
SPIRAL represents these algorithms in a specially designed
language—SPL—which is described in this section. For

Table 1
Definition of the Most Important SPL Constructs in BNF;
n, & Are Positive Integers, o, a1, Real Numbers

spl = {genenic symbol transform

spl spl {product)
spl) @ ... @ (spl {direct sum)
sply @ -- spl {tensor product)
I, @ (spl) | I, 2% (spl {overlapped tensor product)
spl {comversion 1o neal)

EEneric = diag(ag,....a5-1)] --..

symbol = | Jo | L | Ry | Fo

transform

DFT, | WHT, | DCT-2, | Filt, (h[:])

N I S

Solving the minimization (1) requires SPIRAL to evaluate
the cost C for a given implementation I and to autonomously
explore the implementation space 7. Cost evaluation is ac-
complished by the third level in SPIRAL, the Evaluation
Level block in Fig. 1. The computed value C(T,,.P.I) is
then input to the Search/Learning block in the feedback loop
in Fig. 1, which performs the optimization.

and 7 are also finite. Hence, an exhaustive enumeration of
all implementations I € 7 would lead to the optimal im-
plementation 1. However, this is not feasible, even for small
transform sizes, since the number of available algorithms and
implementations usually grows exponentially with the trans-
form size. For example, the current version of SPIRAL re-
ports that the size of the set of implementations 7 for the
DCT-2;; exceeds 1.47-10"". This motivates the feedback
loop in Fig. 1, which provides an efficient alternative to ex-

Algorithm
Level

Implementation
Level
(SPL Compiler)

Evaluation
Level

Fig. 1.

DSP transform (user specified)

Formula Generation
Formula Optimization

controls

algorithm as formula
in SPL language

Implementation
Code Optimization

C/Fortran

controls

B

implementation

Compilation

Performance Evaluation

The architecture of SPIRAL.

performance

optimized/adapted implementation

Search/Learning

The three main blocks on the left in Fig. 1, and their
underlying framework, provide the machinery to enumerate,

for the same transform, different formulas and different
implementations. We solve the optimization problem in (1)
through an empirical exploration of the space of alternatives.
This is the task of the Search/Learning block, which, in a
feedback loop, drives the algorithm generation and con-
trols the choice of algorithmic and coding implementation
options. SPIRAL uses search methods such as dynamic
programming and evolutionary search (see Section VI-A).
An alternative approach, also available in SPIRAL, uses
techniques from artificial intelligence to learn which choice
of algorithm is best. The learning is accomplished by refor-
mulating the optimization problem (1) in terms of a Markov
decision process and reinforcement learning. Once learning
is completed, the degrees of freedom in the implementation
are fixed. The implementation is designed with no need for
additional search (see Section VI-B).

N I e

FFTW and SPIRAL declare in one voice

SPIRAL

An important question arises: Why is there is a need to ex-
plore the formula space F at all? Traditionally, the analysis
of algorithmic cost focuses on the number of arithmetic op-
erations of an algorithm. Algorithms with a similar number
of additions and multiplications are considered to have sim-
ilar cost. The rules in SPIRAL lead to “fast” algorithms, 1.e.,
the formulas F & F that SPIRAL explores are essentially
equal in terms of the operation count. By “essentially equal™
we mean that for a transform of size n, which typically has
a complexity of ©(n log(n)), the costs of the formulas differ
only by (J(n) operations and are often even equal. So the
formulas’ differences in performance are in general not a re-
sult of different arithmetic costs, but are due to differences
in locality, block sizes, and data access patterns. Since com-
puters have an hierarchical memory architecture, from reg-
isters—the fastest level—to different types of caches and
memory, different formulas will exhibit very different ac-
cess times. These differences cause significant disparities in
performance across the formulas in JF. The Search/Leamning
block searches for or learns those formulas that best match

the target platforms memory architecture and other microar-
chitectural features.

FFTW

Finally, there is an estimate mode that performs no mea-
surements whatsoever, but instead minimizes a heuristic cost
function: the number of floating-point operations plus the
number of “extraneous” loads/stores (such as for copying to
buffers). This can reduce the planner time by several orders
of magnitude, but with a significant penalty observed in plan
efficiency (see below). This penalty reinforces a conclusion
of [3]: there is no longer any clear connection between
operation counts and FFT speed, thanks to the complexity
of modern computers. (Because this connection was stronger
in the past, however, past work has often used the count of
arithmetic operations as a metric for comparing O(nlogn)
FFT algorithms, and great effort has been expended to prove
and achieve arithmetic lower bounds [16].)

That there are no longer clear correlation
between flops and performance.

Writing various codes and benchmarking them
is necessary. If you don’t want to do it by hand,

code generators are needed.

I T i
' Hakubi

W y L)

) ay

Chapter 3.
code generations for GPGPUs

Data LéyoutrTransF'ormation for

Structured-Grid Codes on GPU
I-Jui Sung, Wen-Mei Hwu

Abstract—We present data layout transformation as an ef-
fective performance optimization for memory-bound structured-
grid applications for GPUs. Structured grid applications are a
class of applications that compute grid cell values on a regular
2D, 3D or higher dimensional regular grid. Each output point
is computed as a function of itself and its nearest neighbors.
Stencil code is an instance of this application class. Examples
of structured grid applications include fluid dynamics and heat
distribution that solve partial differential equations with an
iterative solver on a dense multidimensional array.

Using the information available through variable-length array
syntax, standardized in C99 and other modern languages, we
have enabled automatic data layout transformations for struc-
tured grid codes with dynamic array sizes. We first present
a formulation that enables automatic data layout transforma-
tions for structured grid code in CUDA. We then model the
DRAM banking and interleaving scheme of the GTX280 GPU
through microbenchmarking. We developed a layout transforma-
tion methodology that guides layout transformations to statically
choose a good layout given a model of the memory system.
The transformation which distributes concurrent memory re-
quests evenly to DRAM channels and banks provides substantial
speedup for structured grid application by improving their
memory-level parallelism.

N I S

—
D. Deriving Layout-Neutral Form from C Code
For C programs, we can derive layout neutral form by an
_ informally specified LN from the type of operation of a given
Occupanc Structured Grid expression, as shown below:
Y, Code in layout- o o B
CUDA grid < neutral CUDA « Fully-qualified array subscripting: we can derive D
dimensions . straightforwardly from the declaration of the array, and
| I from the expression. Consider the following C code
¢ ¢ snippet:
float a[D][D];
S1: k+3j]1[i] = 1.0f;
Decide span of Extract index stk o
grid index <4 | expressions and The layout neutral form of a[k+3j]([1]:
expressions classify indices (a, (D, D), (i,k+3j5)) for0<i< D,
LN(alk+ 3j][i]) = D=k+3j<D
Layout Tiling as an € otherwise
optimization problem
Obtain desired Generate CUDA with strides among requrasts issued closely in time. In order to
layout(s) from Ll Transformed perform good data layout for structured grid applications, it
solution Flattening Functions is necessary to benchmark the underlying memory hierarchy

to model the achieved memory bandwidth as a function
of the distribution of memory addresses of concurrent re-
quests. Previous work [18] has benchmarked the GPU to
obtain memory latency versus stride in a single-thread setting.
However, since the class of applications we are targeting is
mostly bandwidth-limited, we must determine how effective
bandwidth varies given access patterns across all concurrent
requests. First, each memory controller will have some pattern
of generating DRAM burst transactions based on requests.
The memory controller could be only capable of combining
requests from one core, or could potentially cnmbin requests

: Data Layout Transforms for Structured Grid C«

A GPGPU Compiler for Memory Optimization and
Parallelism Management

Yi Yang Ping Xiang
Dept. of ECE School of EECS
North Carolina State University Univ. of Central Florida
yyangl4@ncsu.edu xp@knights.ucf.edu

Abstract

This paper presents a novel optimizing compiler for general pur-
pose computation on graphics processing units (GPGPU). It ad-
dresses two major challenges of developing high performance
GPGPU programs: effective utilization of GPU memory hierarchy
and judicious management of parallelism.

The input to our compiler is a naive GPU kemel function,
which is functionally correct but without any consideration for
performance optimization. The compiler analyzes the code, identi-
fies its memory access patterns, and generates both the optimized
kernel and the kernel invocation parameters. OQur optimization
process includes vectorization and memory coalescing for memo-
ry bandwidth enhancement, tiling and unrolling for data reuse and
parallelism management, and thread block remapping or address-
offset insertion for partition-camping elimination. The experi-
ments on a set of scientific and media processing algorithms show
that our optimized code achieves very high performance, either
superior or very close to the highly fine-tuned library, NVIDIA
CUBLAS 2.2, and up to 128 times speedups over the naive ver-
sions. Another distinguishing feature of our compiler is the un-
derstandability of the optimized code, which is useful for
performance analysis and algorithm refinement.

Jingfei Kong Huiyang Zhou
School of EECS, UCF Dept. of ECE
Univ. of Central Florida North Carolina State University
jfkong@cs.ucf.edu hzhou@ncsu.edu

[Input: Naive kernel functions J

Vectorization for memory access bandwidth (Section 3.1)

v

Checking memory coalescing (3.2)

i

Converting non-coalesced accesses into coalesced ones (3.3)

Checking data dependencies and sharing patterns (3.4)

v

Thread & thread-block merge (3.5)
L 4
Data prefetching (3.6)

v

Removing memory partition camping (3.7)

[Qutput: Optimized kemnel functions &]

invocation parameters

Figure 1. The framework of the proposed compiler.

SPAP: A Programming Language for Heterogeneous Many-Core Systems

Qiming Hou* Kun Zhou' Baining Guo* *

* Tsinghua University T Zhejiang University *Microsoft Research Asia

Abstract

We present SPAP (Same Program for All Processors), a container-
based programming language for heterogeneous many-core sys-
tems. SPAFP abstracts away processor-specific concurrency and per-
formance concerns using containers. Each SPAP container is a
high level primitive with an STL-like interface. The programmer-
visible behavior of the container is consistent with its sequential
counterpart, which enables a programming style similar to tradi-
tional sequential programming and greatly simplifies heterogenous
programming. By providing optimized processor-specific imple-
mentations for each container, the SPAP system is able to make
programs efficiently run on individual processors. Moreover, it is
able to utilize all available processors to achieve increased perfor-
mance by automatically distributing computations among different
processors through an inter-processor parallelization scheme. We
have implemented a SPAP compiler and a runtime for x86 CPUs
and CUDA GPUs. Using SPAP, we demonstrate efficient perfor-
mance for moderately complicated applications like HTML lexing
and JPEG encoding on a variety of platform configurations.

Append a 00 byte after all FF bytes I

-
forall(x in A){ — M g:;:;:(t:u;emp

B.push_back(x); Copy to final

if(x==8xFF){
B.push_back(@); eV _ ™

}

SPAP Program ﬂ'

SPAP System I—

Figure 1: The SPAP system architecture. The programmer writes a
high level program using SPAP containers. The SPAP runtime au-
tomatically parallelizes the program to a heterogenous architecture
using a variety of parallelization trechnigues.

. .
4' Append serially

cru il

R —— T TS e——_—_ e -_._‘W

n Embedded Language for Accelerated Array
omputations

Data.Array.Accelerate defines an embedded language of array computations for
high-performance computing. Computations on multi-dimensional, regular arrays are expressed in
the form of parameterised collective operations (such as maps, reductions, and permutations). These
computations are online compiled and executed on a range of architectures,

For more details, please see the slides and video of { horner :: Num a = [a] -» a -» a
Waorkshop 2009 (in Edinburgh): Haskell Arrays, Acce| horner coeff x = foldrl madd coeff

where
The current version is still a beta version g madd a b = b*x + a

should however already be useful for a rar
cnd :: Exp Float -> Exp Float

Availability cnd d =
let poly = horner coeff
® Package accelerate is available from Hacka coeff - [@.9,0.31938153,-0.356563782,1. 781477937, -1.821255978,1. 330274429
® Main darcs repository: accelerate repo rsqriZpl = ©0.39894228040143267793994605993438
#® Bug tracker: http:/ /trac.haskell.org/accelerat k =1.8 7 (1.0 + ©.2316412 * abs d)

chd’ rsqriZpi * exp (-8.5%d*d) * poly k
in d=>*87 (1.8 - cnd', cnd")

module SgrtMaop (sqriMap) where
blackscholes :: Vector (Float, Float, Float) -> Acc (Vector (Float, Float))
import Prelude hiding CzipWith, map) blackscholes xs = Acc.map go (Acc.use xs)
where
import Data.Array.Unboxed go x =
import Data.Array.Accelerate let (price, strike, years) = Acc.untuple x
r = Acc.constant riskfree
sgrtMap :: Vector Float -» Acc (Vector Float) v = Acc.constant volatility
sqriMap xs sqriT = sqrt years
- let di = (log (price / strike) + (r + 8.5 * v * v} * years) / (v * sgrtT)
¥5' = Use XS dZ =dl - v * sqriT
in cndDl = cnd dl
map sgrt x5 ' cndDZ = cnd dZ
expRT = exp (-r * years)
in

Acc.tuple (price * cndDl - strike * expRT * cndDZ
, strike * expRT * (1.8 - cndD2) - price * (1.8 - cndD1))

Nikola: Embedding Compiled GPU Functions in Haskell

Geoffrey Mainland and Greg Morrisett

Harvard School of Engineering and Applied Sciences
{mainland, greg}@eecs.harvard.edu

Abstract

We describe Nikola, a first-order language of array computations
embedded in Haskell that compiles to GPUs via CUDA using a
new set of type-directed techniques to support re-usable computa-
tions. Nikola automatically handles a range of low-level details for
Haskell programmers, such as marshaling data to/from the GPU,
size inference for buffers, memory management, and automatic
loop parallelization. Additionally, Nikola supports both compile-
time and run-time code generation, making it possible for program-
mers to choose when and where to specialize embedded programs.

interpreter that expects to be handed a program represented as data,
e.g£., a string or an abstract syntax tree. For example, Nikola re-uses
the CUDA compiler, which takes care of the lowest-level details of
mapping C-like programs onto the GPU instruction set.

Deep embeddings that generate code in a target language that
is callable from Haskell allow functional programming to be used
in new domains without the overhead of writing a complete parser,
type checker and compiler. This style of embedding not only pro-
vides the syntactic convenience and aesthetic satisfaction of com-
binator libraries like those for parsing and pretty-printing, but it

allasre ArAacrammeare tn avrrace commntatioane that cannnt he av_

S Hakubi

3.1 let-sharing The problem is that we cannot observe the sharing introduced
by Haskell bindings. When we try to do a code generation pass, we

Consider the simple function square, defined as: will therefore end up processing the expression twice, losing the

square :: Exp Float — Exp Float sharing, and the code generated for the expression 1 4 2 will do
square x = X * X twice the work it needs to. In this simple example the duplicated
The expression square (1 + 2) evaluates to the following ab- work is minimal, but for "’er’fdf tl'!is kind of 1'3?'3 of sharing
stract syntax for our embedded language: causes k to be re-evaluated five times in the expression generated
E (MulE (AddE (FloatE 1.0) (FloatE 2.0)) Eir;r)ﬂogfk, leading to a substantial increase in the cost of calling
AddE (FloatE 1.0) (FloatE 2.0) . T
_(_(od) (Floa) Ideally we would like to find a way to make the sharing im-
When this term is eventually evaluated, the value of the sub- plicit in our term representation explicit. This would allow us to

expression 1 4 2 will be computed twice, even though we expect
by looking at the definition of square that it would only be com-
puted once. Of course GHC knows to only calculate the rerm rep-
resentation of 1 4 2 once, so the in-memory representation of our

use Haskell's let bindings to represent let bindings in our embed-
ded language and yield the following alternate representation for

square (1 + 2):

embedded language expressions is: E (LetE "x" (AddE (FloatE 1) (FloatE 2))
£ (MulE (VarE "x") (VarE "x")))
l We call this type of sharing let-sharing because by properly detect-
MulE
AddE
1 2

3.2 A-sharing

There is another kind of sharing that, to our knowledge, no pre-
vious techniques allow us to observe. Consider the expression

blackscholes :: Exp (Vector Float]) -- Stock prices
—+ Exp (Vector Float) -- Option strikes
— Exp (Vector Float) -- Option years
—+ Exp (Vector Float)

blackscholes ss xs ts =

zipWith3 (As x t — blackscholesl s x t r v)
ss xs ts
where

blackscholesl :: Exp Float -- Stock price
—+ Exp Float -- Option strike
—+ Exp Float -- Option years
—+ Exp Float -- Riskless rate
—+ Exp Float -- Volatility rate
—+ Exp Float

blackscholesl s xtrv =

s * normecdf d1 — x * exp (—r * t) * normedf d2
where

normedf :: Exp Float —+ Exp Float
normedf = vapply § Ax = (x.<.0) 7 (1 —w,w)
where

horner coeff x = foldrl madd coeff
where
maddab=b=*x+a

Listing 2: Black-Scholes call option valuation in Nikola

Chapter 4. The design of

Paraiso

PARallel Automated Integration Scheme Organizer

Input: Discretized Algorithms for solving Partial
Differential Equations(e.g. Godunov scheme,
BSSN scheme), in mathematical notations

Output: Implementations on Distributed, Manycore
Machines.

—~ L V.F=
ot "
Discretized Partial Differential
M I Equation Language: DPDEL
0 e W anuaily d_dt (q CiD)
i Ei- - v ' = (a [i,j31) (f CjDD
. ’ Discretized form f L3 = .. .
an—f—l) _ QEﬂ) _ ﬁtzﬂijﬁ,gﬂ,’z),
j Autiated VVM instruction
E tld r2, g2C0,0,0]

......
..........

001 . :?'1 21':?:1 . . L d r 1 /’ g 2 [O /7 0 /7 1]
VVM instructions add r1,r2,r3

e e st r3,g1
Virtual Vector Machine: VVM Autiated
e.g. CUDA+MPI program

result progrlam in existing *q=cudaMal loc(.) ;
4 : anguage __shared__ a,b;

native.compilers a=qlidx]1;
b=qlidx+11]1;

pLidx]=atb;

| "" e

executables

S e

From equation to numerical algorithm

Basic Equations Discretized Partial Differential

M Il Equation Language: DPDEL
mi anually :
Q; = (P;)—/ UdV. d_ﬂt (g [11)

Vi

o) = (a [i,31) f C3jD
z e
anﬂ) _ an) _ &tzﬂijﬁ£;+1f2)a
 We have learned that there are no trivial ways of
doing this. Creativity and understanding of
physics is required
e e.g. HD>Godunov, GR—>NSSB

* \We can concentrate on creation, by automatlng
the rema|n|n processs LY e

oU

ot +V - -F=0

58

Discretized PDE Language

anﬂ) _ Q;n) . &tzAﬁﬁgHm,
e Succinctly describe
numerical algorithms, using
and defining vectors, tensors,
differential operators.

d_dt (q [il)
= (a [i,j1) f [iD
f [51 = w .

Algorithm
Description

e.g. Use Einstein’s notation.

e.g. Write flux calculation only
once (not three times, for
XYZ direction.)

e.g. Write 4-th order Runge-
Kutta only once (in your

whole career)

- | | SE]
Discretized PDE Language

n+1 n A (n+1/2)
Qi)=QE)—ﬂtzﬂijFij ;

J

= (a [i,j1) f [iD
f [51 = w .

e.g. Write in terms of cell
automata rules (similar to , |
(Translated to VMM instructions

layout-neutral concept) |
don’t worry how to distribute ¥ DPDEL compiler.

or communicate at this stage.

 DPDEL codes are written ¥ . .
for VVM, the Virtual oo B ‘enoil o enoi SERR
Vector Machine, which o o
has a single block of 0,00 ¢ o

infinite registers and B P
vector capability. ’

d_dt (q [i1)

R R akin

i ==
Virtual Vector Machine

e Virtual Machine representing real number cell
automata

e 3D array of cells, each cell has several registers
e arithmetic instructions operate parallel on all cells
* also has instructions to load from neighbor cells

* etc.

This virtual machine is not
executed, but used to X o

construct data flow graph/

_

R I R
SE
VVM Compiler

Convert the data flow graph
to programs of existing
language

VVM registers get distributed

among nodes. Deduce
Communications. Decide data

layouts.

Let’s start by having an easy VVM Compiler
way to choose and change

them manua”y- Native programs

Then, let’s have computers
benchmark and choose them
automatically.

B e e e

Basic Equations

Manually

Discretized form

Autiated

VVM instructions

iated

program in existing

Aut

language

native compilers

executables

) L
_ B i R EE ey o

Paraiso

From succinct description of
numerical algorithm and modular
knowledge on simulations,
generate codes on parallel
machines.

We detect a lot of projects running
for similar or related goals, which
we can collaborate, use as
components, use as code
generation targets, of Paraiso.

Doing so will be necessary for our
success.

I R

Chapter 5. Paraiso 2008
e a prototype

e for solving ordinally differential equations,
with many different initial conditions, in
parallel

e Presented in ASTROSIM 2008, Ascona,
Switzerland

Made in Haskell

e Paralso ==

.. IS a code generator
for massively parallel
algorithms

/ T

Generate Source Code For each Architecture
/ I ' y

C++code C++ w/MPI Fortran CUDA

| | | | | |
Hardware Specific Codes LA
L/J . — 1

Specmc Compilers

Paraiso
Code

T S e

wParaiso syntax and Code Generation

import System.Environment
import Data.Complex
import Paraiso

using namespace std;
main = do double drand(double lo, double hid{
args <- getArgs return Lo + rand(J/CdoubleRAND_MAX * Chi-1o);
‘elem” args th

let arch = if }
1cum 128 128 int main{int argc, char **argv){
e ;:& double aZ[16384];

putStrln % compile arch code double a3[16384];

where for({int al = @ ; al = 16384 ; ++ald{
code = do _—__________————"”"—_—_———_—' aZ[al] = drand(@.® , 4.80;

parallel 16384 & do a3fal] = drand(@.2 , 1.0);

rooanocare for(int o4 = @ ; o4 < 65536 ; ++a4){
r =% Rand ©.@ (4.@::Double) a3fal] = (Caz[al]l * a3[all]) * (1.9 - a3[all));
X =% Rand 8.8 (1.@::Double) }
cuda % do cout << aZ2fal] << << n3[al] =< endl;
sequential 65536 % do 1
X r*x=* (1-x) return @;
output [r,x] }

m
-:-- MainLogistics.hs Top (25,8)

Paraiso Code C++ code

e parallel and sequential generates loops
e allocate prepare the memory
* you can use usual math operations ___

SRPT L,

R

i Generate codes for special
architectures

Paraiso Code

import System.Environment
import Data.Complex
import Paraiso

main = do
args <- getArgs
let arch = if "--cuda” “elem” args th
CUDA 1728 178

else
XEBb
putStrln & compile arch code
where
code = do

parallel 16384 % do

r <- allocate /////

X <= allocaote
r =% Rand 8.8 (4.8::Double)
X =% Rand 8.8 (1.9::Double)
cuda % do
sequential 65536 % do
X r X (1-x)
output [r,x]

~1-- MainLogistics.hs Top (25,0)

e Paraiso writes
hardware specific
codes for you

#include <iostreams- ‘ l 'DA

#include <cstdlib>
using namespace std;
double drand(double lo, double hi){
return 1o + rand()/(double)RAND_MAX * Chi-1o0);
1
__global__ void function_on_GPU_a4(float *aZ_dev , float *a3_dev){
int al = blockIdx.x * gridDim.x + threadIdx.x;
float aZ_reg;
aZ_reg = aZ_dev[al];
float a3_reg;
a3_reg = a3_dev[al];
for(int o4 = @ ; a4 < B5536 ; ++a4){
a3_reg = ((aZ_reg * a3_reg) * (1.8 - a3_reg));
1
aZ_dev[al] = aZ_reg;
a3_dev[al] = a3_reg;
i)
int main{int argc, char **argv){
dim3 grids{128);
dim3 threads(128);
float *0? = (floot*) malloc(sizeof(float)*16384);
float *aZ_dev;
cudaMalloc{(vold**) &aZ_dev ,sizeof(float)*16384);
fleat *a3 = (fleat*) mallec(sizeof(float)*16384);
float *a3_dev;
cudaMallocC(vold**) &a3_dev ,sizeof(floot)*16384);
for(int al = @ ; al < 16384 ; ++al){
azlal] = drand(@.@ , 4.8);
a3fal] = drand(@.@ , 1.8);
1
cudaMemcpy(aZ_dev , aZ,sizecf(float)*16384 , cudaMemcpyHostToDevice);
cudaMemcpy(a3_dev , a3,sizeof(float)*16384 , cudaMemcpyHostToDewvice);
functicn_on_GPU_a4<<<grids,threads>>>(aZ_dev , a3_dev);
cudaMemcpy(aZz , aZ_dev,sizeof(float)*16384, cudaMemcpyDeviceToHost);
cudaMemcpy(a3 , a3_dev,sizeof(float)*16384, cudaMemcpyDeviceToHost);
for(int al = @ ; al < 16384 ; ++al){
cout << aZfal] =< " " =< a3[al] =< endl;
i)

return @;

Math Structure Handling
Paraiso Code

for Cint 2l = 0; al < 1048

43576;
code = do ablal] = draﬁd (-2.0, 2.0); C++ COde
paral lel 1048576 & do a3lal] = drand _(-2.0, 2.0);
c <- allocate a?lal] = aBlall;
z <- allocate aflall = 0.0;
c =% (Rand (-2. U) 2.0) o+ (Rand (-2.0) 2.0) a5[al] = 0.0
z =3 (0 :+ 0 :° Complex (Fxpr Double)) ad[al] = ailall;
cuda § do for (int a8 = 0; a8 < 256; ++a8) {
sequential 256 & do adlal] = (((ad[al] * ad[all) - (aBlal] * ablalll) + a?[all);
z=bzxz+c . ablal] = (({adlall * ablal]) + (aBlall * adlalll) + a3lalll;
output [realPart o, imagPart o, realPart z, imazPart zJ] 24[al1] = a9[al l:

cout << a2lal] <« << adlal] « < adlal] « << ahlal]
| << endl;

* You can use complex numbers, vectors
and their operators (inner/outer
product, etc...)

 Use predefined ones or define your
own

example: drawing e Paraiso breaks them down to
Mandlebrot set

atomic operations, so no overhead for
using the structured dta R

S e
Generate Algorithms

code = do for {int all = 0; al0 < 256; ++al0) {

0;
paral lel 16384 § do ahlal] = a?[all;
% < allocate ablall = (a3lal] * a?[all);
p < allocate ad[all = (ad[al] + 5.0e-3);
% ;$ Eagd 0.1 (1.0::Double) a%=a}= = Eag=a}= + (SEU?]§ ¥ ablalll);
oo Lal] = Lal] *
" intesrated 0.01 2.56 § [a1l - ab[al] - Gooea x artaily; G+ code
d_dt x & prx a8lal] = (a%[al] * a?[all);
- i ad[all = (adlal] + 5.0e-3);
output] a2[al] = (ablal] + (1.0e-2 % a8[all));
ag=a}= - (a3[al] * a?[all);
Paraiso Code Sl +
(1.666666666666666G-3 *
(((ablal] + (2.0 * a?lall)) + (2.0 % a8[al1])) + ad%lall)));

e Here Paraiso generates a classic 4th order
Runge-Kutta integral.

e Again, use predefined algorithms or define your
own.

paral lel 16384 1 do
x < allocate

- allocate

- allocate

=5 Rand 10 20
=% Rand 10 20
uda § do
- allocate
- allocate
- allocate

[T LY e
I

=5 Rand 10 (20.0: :Double)

Paraiso

Code

anuplot

[s T I R
1
L}

integrate4 0.01 (10 % Bh5.36) 3 [
d_dt x § - phx + phy :
ddt vl - iz + o -y,
ddt z 3wty - btz

output [x,v,z]

*lorenz-rkd-0.05. txt’
"lorenz-int1-0.01.txt’

using namespace shd}?
double
grund tdouble lo, double hid
return lo 4 rand (1 A (double) RAND_MAX ®x(hi - lol
_—alobal__ w

function_on_| GPU a5 (float ®a2_dev, float %a3_dev, float ®ad_dew)

int al = blockIdw,x ® aridDimex + threadlde,x?
flout a2_shaz

a2_sha = u2 deu[ul],

#1laat ai_

a3_sha ; u3 deu[ul],

eu[ul]:

aat aS_sha?
oat ab_sha?
oat a7_sha?

oat
oat
oat
oat
oat
oat
oat
oat
oat
oat

all,
al2,
al?,
al4,
a1s.
alk,
al?,
ald,
alg,
a2,

d,
1
3
& 300
oat ad_sha?
oat a9_sha?
cat alli_shaz

sha?
sha?
sha?
sha?
sha

code

oat a2l
out u22

W0 = (aS_sha ® a2_rshal) + (aS_sha ¥ a¥_shall:
(0 0 - (a2_sha ¥ a4_shal) + (ab_sha % a2_shall - a3_shal;
1

6_sha = E((ﬂ‘ﬂ - [aZ_sha % a¥_shal) + (ab_sha * u2_shu]] - a3_shal;
3s

= 0 - sha ¥ a¥_shal) + (ab_zha shu]] - a3_shal;
({a2_sha = u3 sha) - Ta7_sha % a4_shall;
ta§_sha + 5, ﬂe 3]

0,0 - (a5 shu ® a2_shal) + (aS_sha ¥ a3_shall;
(0‘0 - [aZ_sha % a¥_shal) + (ab_sha ¥ aZ_shal) - a3_shal;
a2_sha ¥ a3_sha) - (a7_sha % a4_shall:

Tad_sha +
(1, BhRERGAEEEEEEARER-F %
(i0al2_sha + (2,0 % alS_sha)l + (2,0 ¥ alé_shal) + a2l_shalll;

_sha =
Calo_sha +

01,BEEEEEEEEEEEEEEG-3 *

(00al3_sha + (2,0 #% alé_shal) + (2,0 #% al9_shal) + a22_shall);
a4_sha =
(all_sha +

(1 EREEEEEEEEEEEREEE-F =

ifia 14_sha + (2,0 = ul? shal) + (2,0 ® a20_shal) + a23_shalll;

a2_devlall = a2_sha?
a3_devlall = a3_sha?
a4_devlall = ad4_sha?

main Cint arsc, char ®¥arsu)

dimd arids (12517
dim? threads (128];

Float ®a2 = (float %) malloc (zizeof (Float) x 16354) 7

Float %a2_deur

cudaMalloc (lvcid ®#) a2 dew, sizect (Float) ® 1635417

Float ®a? = (float %) malloc (zizeof (Float) x 16354) 7

Float %al_deur

cudaMalloc (lvcid ®#) Sa_dew, sizect (Float) ® 1635417
(float %) malloc (sizeof (Float) x 16354) 7
e

cudalalles ((u

cid ®%) Gat_dew, sizeod (Float) ¥ 16384) 7
0F al ¢ 163547 +ald £

drand (10,0, 20, 0];

drand (10,0, 20‘0 7

drand (10‘0, an,00;

cudaMemcpy (a2_dev, a2,
cudabemcpy (03 deu, u3:
cudabemcpy

sizeof
sxzeof
zeof

(#loat) = 16384, cudal
(#loat) = 16384, cudal
(float) = 16384, cudal

function_on_| GPU u5 (((srxds, threads 22> (a2_dew, a

cudaMemcpy [o2, 02_deu,

sizeof

(#loat) = 16384, cudal

cudabemcpy (a3, a3_dew, sizeof (Float] * 16384, cudu

cudaMemcpy (a4, at_dew, sizeod (flogt) x 16354,
18:
¢ a4lall << endl;

For Cint al = 0f al
cout ¢ a2lall <<

return 07
E

All (119

emcpyHo st ToDevice) ?
emcpyHo st ToDevice) ?
emcpyHo st ToDevice) ?

eu, at_deul 7
Emcpylen ce ToHo st 7
echsDeuxceToHost];
oHost)

3+

0l

1E
¢ a3lall <<

(G4l Abbrey

Pt e
Hakubi

iy o -) ——

\ ‘ gl

End of my talk
thank, ou faﬁ //(n‘e/(/}(y,/

	Chapter 0�Advertisement
	The Hakubi Center, Kyoto University
	 Paraiso project �--- a code generator for partial differential� equation solvers
	Index
	Paraiso
	Target Problem : �Partial Differential Equations, Explicit Solvers, on Uniform Mesh
	Partial Differential Equations, �Explicit Solvers, on Uniform Mesh
	Paraiso
	Why I want it
	スライド番号 10
	DEGIMA
	What a programmer should know
	algebraic concepts�scalars, vectors, tensors…
	physical equations
	time integration methods
	space interpolation methods
	data structures
	optimizations�= to change the implementation without changing the meaning
	optimizations�= to change the implementation without changing the meaning
	optimizations�= to change the implementation without changing the meaning
	other optimizations
	hardware designs-individual chips
	Complex Storage Hierarchies
	The codes must be
	Programming is to choose
	Modern Parallel Programming is like this
	What a code generator aims for
	スライド番号 28
	goals of Paraiso project
	Chapter 2.�Previous studies on code generations and autotuning
	FFTW
	スライド番号 32
	スライド番号 33
	スライド番号 34
	SPIRAL
	スライド番号 36
	スライド番号 37
	SPL – domain specific language to describe DSP transforms
	スライド番号 39
	スライド番号 40
	FFTW and SPIRAL declare in one voice
	Chapter 3.�code generations for GPGPUs
	Data Layout Transformation for Structured-Grid Codes on GPU �I-Jui Sung, Wen-Mei Hwu
	スライド番号 44
	スライド番号 45
	スライド番号 46
	スライド番号 47
	スライド番号 48
	スライド番号 49
	スライド番号 50
	Paraiso
	スライド番号 52
	From equation to numerical algorithm
	Discretized PDE Language
	Discretized PDE Language
	Virtual Vector Machine
	VVM　Compiler
	Paraiso
	Chapter 5. Paraiso 2008
	Paraiso
	Paraiso syntax and Code Generation
	Generate codes for special� architectures
	Math Structure Handling
	Generate Algorithms
	example : Lorenz attractor
	End of my talk�thank you for listening!

