
Chapter 0
Advertisement

The Hakubi Center, Kyoto University

• Unique, long-sighted, young researchers
wanted from all the world, to save the science

• Natural Science, Social Science, Engineering… all OK

• hire 20 researcher / year, 5 years position
• Salary of Assistant Prof. / Associate Prof. + research funding

• No mid-career assessment & lay-off

• No education duty

• No PhD required to apply

• No tenure track

Kyoto Univ.

Since 2010

Paraiso project
--- a code generator for partial differential

equation solvers

Takayuki Muranushi @nushio
Assistant Professor at The Hakubi Center,

Kyoto University（2010-2015）

http://www.paraiso-lang.org/wiki/

http://www.paraiso-lang.org/wiki/�

Index

1. The goals of Paraiso

2. Previous studies on code generations and
autotuning

3. Previous studies on code generations for
GPGPUs

4. The design of Paraiso

5. Paraiso 2008, the Prototype

Paraiso
Input: Discretized Algorithms for solving Partial

Differential Equations(e.g. Godunov scheme,
NSSB scheme), in mathematical notations

Output: Implementations on Distributed, Manycore
Machines.

PARallel Automated Integration Scheme Organizer

Chapter 1. The goals of

Target Problem :
Partial Differential Equations,

Explicit Solvers, on Uniform Mesh

General Relativity

Magneto-HydrodynamicsHydrodynamics
Radiative Transfer

(Relativistic)

• combinations of these equations

• combinations with chemistry etc..

Partial Differential Equations,
Explicit Solvers, on Uniform Mesh

From computational point of view:
• They are d-Dimensional, real-number cell

automata.
• The state of each cell is a tuple of real numbers.
• The state of the cell at generation (n+1) is defiend

as function of the states of its neighbor cells at
generation (n).

n-th generation n+1 -th generation

Paraiso

• is not a collection of codes.

• is not also a glue to paste codes.

• is a tool for implementing one code.

Why I want it

• because it’s getting hard to write simulation
codes today

• it’s even harder to optimize them

DEGIMA

future hadwares?TIANHE-1A

GRAPE-DR

Target Hardware:

NIC

SIMDmem

NIC

SIMDmem

DRAM DRAM

What a programmer should know

• algebraic concepts

• physical equations

• time integration methods

• space interpolation methods

• data structures

• optimization techniques

• and hardware designs

algebraic concepts
scalars, vectors, tensors…

akx_ux_p=akxx_p*gixx_p
+akxy_p*gixy_p +akxz_p*gixz_p

aky_ux_p=akxy_p*gixx_p
+akyy_p*gixy_p +akyz_p*gixz_p

akz_ux_p=akxz_p*gixx_p
+akyz_p*gixy_p +akzz_p*gixz_p

akx_uy_p=akxx_p*gixy_p
+akxy_p*giyy_p +akxz_p*giyz_p

aky_uy_p=akxy_p*gixy_p
+akyy_p*giyy_p +akyz_p*giyz_p

akz_uy_p=akxz_p*gixy_p
+akyz_p*giyy_p +akzz_p*giyz_p

akx_uz_p=akxx_p*gixz_p
+akxy_p*giyz_p +akxz_p*gizz_p

aky_uz_p=akxy_p*gixz_p
+akyy_p*giyz_p +akyz_p*gizz_p

akz_uz_p=akxz_p*gixz_p
+akyz_p*giyz_p +akzz_p*gizz_p

jk
ij

k
i AA γ=

physical equations

• Hydrodynamics, Magneto-hydrodynamics, …

• The numerical algorithm ()

• Riemann solvers

• additional physics (multifluid, coupling with
chemistry etc…)

• Which variable to take (conserved, primitive,
surface integral)

time integration methods

• 1st order in time

• 2nd order in time
• FORCE method, etc…

• 4th order in time

• and so on…

• Symplectic … (If you start from a Hamiltonian)

• ….

space interpolation methods

• piecewise constant

• piecewise linear
• Total Variance Diminishing….

• piecewise parabolic
• Shock capturing

• WENO….

data structures

from Datta. 2009

Morton ordering

optimizations
= to change the implementation without changing the meaning

Less computation?

for(;;){

f[i] = calc_f(a[i], a[i+1]);

}

for (;;){

b[i] += f[i] – f[i-1];

}

Less storage?

for(;;){

f0 = calc_f(a[i-1], a[i]);

f1 = calc_f(a[i], a[i+1]);

b[i] += f1 – f0;

}

optimizations
= to change the implementation without changing the meaning

Array of Structure (AoS)

mxyzmxyzmxyzmxyz
mxyzmxyzmxyzmxyz

mxyzmxyzmxyzmxyz

mxyzmxyzmxyzmxyz

・

・

・

Structure of Array (SoA)

mmmmmmmmmmmmmmmm

xxxxxxxxxxxxxxxx

yyyyyyyyyyyyyyyy

zzzzzzzzzzzzzzzz

・

・

・

optimizations
= to change the implementation without changing the meaning

Reduced Storage Access Reduced Storage Space

■■■■■■

■■■■■■■■■■

n-th generation

n+1 -th generation

■■■■■■

■■■■■■■■

n-th generation

n+1 -th generation

■■■■■■

■■■■■■■■

sync

Suppose a mesh hydro algorithm that needs to
communicate 2 neighbor cells per generation

■■■■■■

■■■■■■■■■■■■■■

n-th generation

n+2 -th generation

Even more, a single solver can contain both optimization.
e.g. the former for inter-node communication, the latter for the scratchpad

other optimizations

• use SIMD instructions

• multicore

• cache awareness

• NUMA awareness

• padding

• common subexpression
eliminating

• use of accelerators

• use of scratchpads

• use of pinned memories

22

hardware designs-individual chips

Cell B.E. MagnyCours

from Datta. 2009

Single node

メモリ: (4GBx6) + (8GBx3
+ 2GBx3)
CPU：Westmere EP x2
GPU：Tesla 2050
(515Gflops + 3GB) x3
通信：Infiniband QDR
10GB/s
ローカルディスク：SSD x2
RAID0 (460MB/s read)

2.2×1015flops

2.4?×1014flops

1.3×1013 Byte

7.6×1013 Byte

7.0? ×1015 Byte

Disks

1.4×1013 Byte/s

6.1×1014 Byte/s

3.4×1013 Byte/s

6.6×1011 Byte/s

1×1014 Byte/s

GPU
CPU

GPUの
メモリ
ホストの

メモリ

SSD

DISK

communication

L1
L2
L3

shared
L1
L2

Complex Storage Hierarchies
Tsubame 2.0 as example

The codes must be
• Memory Hierarchy Aware

• Heterogeneous, in the future.

=write same algorithm for several hardware

• Anyway, we need to re-write codes every time
the dominant hardware change

L1 Cache

L2 Cache

VRAM

HOST MEMORY

SSD

Hard Disk

Register

Shared Memory

Programming is to choose

algebraic concepts

physical equations

time integration
methods

space interpolation
methods

data structures

optimization techniques

and hardware designs

tensors, its symmetry…

HD, MHD, GR, …

1st order, 2nd order, 4th
order, more…

1st, 2nd, 3rd, TVD, Shock…

SoA, AoS, distribution,
communication timing…

CPU, GPU, what next, …

Modern Parallel Programming is like this

The amount of programs you write in your life
is the product of various factors

Specify each of the sufficient knowledge modules,
and programs like above are automatically
generated

I want it like this

What a code generator aims for

• Generally you write Nf×Nmath×Neq×Nint×Nhw…
lines of code

• You find a bug / improvement and want Neq = Neq + 1; then
you need to re-write Nf×Nmath×1×Nint×Nhw… lines

• With code generator you only have to write

Nf + Nmath + Neq + Nint + Nhw… lines

• You want Neq = Neq + 1; then just add 1 line

• You can concentrate on physics

• The purpose of this project is to design a high-
level language for computer simulations on
supercomputers as well as today’s advanced
personal computers. A language to describe
the knowledge on algebraic concepts, physical
equations, integration algorithms,
optimization techniques, and hardware
designs --- all the necessaries of computer
simulations in abstract, modular, re-usable
and combinable forms.

goals of Paraiso project

• We can write faster, as well as execute faster.

• We can give computers sufficient yet simple
instructions. They do all the lengthy works.
1. write a code.

2. write various versions of the codes and
benchmark.

• We reach Paraiso.

Chapter 2.
Previous studies on code

generations and autotuning

FFTW

• Fastest Fourier Transform in the West.

• “FFTW's performance is portable”

• based on a code generator that can generate
various FT codes. FFTW performs automated
benchmarks and figure out the best
implementation. The code generator is written
in OCaml.

• Matteo Frigo and Steven G. Johnson, "The Design and Implementation of
FFTW3," Proceedings of the IEEE 93 (2), 216–231 (2005).

8

4

2

1 1

2

1 1

4

2

1 1

2

1 1

genfft – domain specific language to
describe DFT solvers and plans

expr.ml

monad.ml

simd.ml

SPIRAL

• a series of project to generate
software/hardware for linear transforms, most
notably the discrete Fourier transform (DFT).

Markus Püschel, Franz Franchetti and Yevgen Voronenko
“Spiral”
to appear in Encyclopedia of Parallel Computing, Eds. David
Padua, Springer 2011

Puschel et al. “SPIRAL: Code Generation for DSP Transforms”
PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

SPL – domain specific language to
describe DSP transforms

FFTW and SPIRAL declare in one voice

SPIRAL FFTW

That there are no longer clear correlation
between flops and performance.
Writing various codes and benchmarking them
is necessary. If you don’t want to do it by hand,
code generators are needed.

Chapter 3.
code generations for GPGPUs

Data Layout Transformation for
Structured-Grid Codes on GPU

I-Jui Sung, Wen-Mei Hwu

Paraiso
Input: Discretized Algorithms for solving Partial

Differential Equations(e.g. Godunov scheme,
BSSN scheme), in mathematical notations

Output: Implementations on Distributed, Manycore
Machines.

PARallel Automated Integration Scheme Organizer

Chapter 4. The design of

Basic Equations

Discretized form

VVM instructions

program in existing
language

executables

d_dt (q [i])

= (a [i,j]) (f [j])

f [j] = … …

ld r2, g2[0,0,0]

ld r1, g2[0,0,1]

add r1,r2,r3

st r3,g1

*q=cudaMalloc(…);

__shared__ a,b;

a=q[idx];

b=q[idx+1];

p[idx]=a+b;

Manually

Automated

Automated

native compilers

Virtual Vector Machine: VVM

result

Discretized Partial Differential
Equation Language: DPDEL

VVM instruction

e.g. CUDA+MPI program

Basic Equations

Discretized form

d_dt (q [i])

= (a [i,j]) (f [j])

f [j] = … …

Manually

Discretized Partial Differential
Equation Language: DPDEL

From equation to numerical algorithm

• We have learned that there are no trivial ways of
doing this. Creativity and understanding of
physics is required

• e.g. HDGodunov, GRNSSB
• We can concentrate on creation, by automating

the remaining processes.

Discretized PDE Language
d_dt (q [i])

= (a [i,j]) (f [j])

f [j] = … …

Algorithm
Description

• Succinctly describe
numerical algorithms, using
and defining vectors, tensors,
differential operators.

e.g. Use Einstein’s notation.
e.g. Write flux calculation only

once (not three times, for
XYZ direction.)

e.g. Write 4-th order Runge-
Kutta only once (in your
whole career)

Discretized PDE Language
d_dt (q [i])

= (a [i,j]) (f [j])

f [j] = … …

Algorithm
Description

e.g. Write in terms of cell
automata rules (similar to
layout-neutral concept)
don’t worry how to distribute
or communicate at this stage.

• DPDEL codes are written
for VVM, the Virtual
Vector Machine, which
has a single block of
infinite registers and
vector capability.

Translated to VVM instructions
by DPDEL compiler.

Virtual Vector Machine
• Virtual Machine representing real number cell

automata

• 3D array of cells, each cell has several registers

• arithmetic instructions operate parallel on all cells

• also has instructions to load from neighbor cells

• etc.

This virtual machine is not
executed, but used to

construct data flow graph

VVM Compiler
• Convert the data flow graph

to programs of existing
language

• VVM registers get distributed
among nodes. Deduce
Communications. Decide data
layouts.

• Let’s start by having an easy
way to choose and change
them manually.

• Then, let’s have computers
benchmark and choose them
automatically.

VVM instructions

Native programs

VVM Compiler

Paraiso

• From succinct description of
numerical algorithm and modular
knowledge on simulations,
generate codes on parallel
machines.

• We detect a lot of projects running
for similar or related goals, which
we can collaborate, use as
components, use as code
generation targets, of Paraiso.

• Doing so will be necessary for our
success.

Basic Equations

Discretized form

VVM instructions

program in existing
language

executables

Manually

Automated

Automated

native compilers

Chapter 5. Paraiso 2008
• a prototype

• for solving ordinally differential equations,
with many different initial conditions, in
parallel

• Presented in ASTROSIM 2008, Ascona,
Switzerland

• Made in Haskell

Paraiso
Paraiso
Code

C++ code C++ w/MPI Fortran CUDA

… is a code generator
for massively parallel
algorithms

Generate Source Code For each Architecture

Hardware Specific Codes

g++ CC f77 nvcc
Hardware Specific Compilers

Paraiso syntax and Code Generation

Paraiso Code C++ code

• parallel and sequential generates loops
• allocate prepare the memory
• you can use usual math operations

Generate codes for special
architectures

CUDAParaiso Code

• Paraiso writes
hardware specific
codes for you

Math Structure Handling

• You can use complex numbers, vectors
and their operators (inner/outer
product, etc…)

• Use predefined ones or define your
own

• Paraiso breaks them down to
atomic operations, so no overhead for
using the structured data

example: drawing
Mandlebrot set

Paraiso Code
C++ code

232Gflops on GPU
1.15Gflops on CPU

Generate Algorithms

• Here Paraiso generates a classic 4th order
Runge-Kutta integral.

• Again, use predefined algorithms or define your
own.

Paraiso Code

C++ code

example : Lorenz attractor

• 165Gflops
on 8800GTX

• 1.8Gflops on
Core2Quad
single thread

Paraiso
Code

CUDA
code

basic equation

End of my talk
thank you for listening!

	Chapter 0�Advertisement
	The Hakubi Center, Kyoto University
	 Paraiso project �--- a code generator for partial differential� equation solvers
	Index
	Paraiso
	Target Problem : �Partial Differential Equations, Explicit Solvers, on Uniform Mesh
	Partial Differential Equations, �Explicit Solvers, on Uniform Mesh
	Paraiso
	Why I want it
	スライド番号 10
	DEGIMA
	What a programmer should know
	algebraic concepts�scalars, vectors, tensors…
	physical equations
	time integration methods
	space interpolation methods
	data structures
	optimizations�= to change the implementation without changing the meaning
	optimizations�= to change the implementation without changing the meaning
	optimizations�= to change the implementation without changing the meaning
	other optimizations
	hardware designs-individual chips
	Complex Storage Hierarchies
	The codes must be
	Programming is to choose
	Modern Parallel Programming is like this
	What a code generator aims for
	スライド番号 28
	goals of Paraiso project
	Chapter 2.�Previous studies on code generations and autotuning
	FFTW
	スライド番号 32
	スライド番号 33
	スライド番号 34
	SPIRAL
	スライド番号 36
	スライド番号 37
	SPL – domain specific language to describe DSP transforms
	スライド番号 39
	スライド番号 40
	FFTW and SPIRAL declare in one voice
	Chapter 3.�code generations for GPGPUs
	Data Layout Transformation for Structured-Grid Codes on GPU �I-Jui Sung, Wen-Mei Hwu
	スライド番号 44
	スライド番号 45
	スライド番号 46
	スライド番号 47
	スライド番号 48
	スライド番号 49
	スライド番号 50
	Paraiso
	スライド番号 52
	From equation to numerical algorithm
	Discretized PDE Language
	Discretized PDE Language
	Virtual Vector Machine
	VVM　Compiler
	Paraiso
	Chapter 5. Paraiso 2008
	Paraiso
	Paraiso syntax and Code Generation
	Generate codes for special� architectures
	Math Structure Handling
	Generate Algorithms
	example : Lorenz attractor
	End of my talk�thank you for listening!

