Shattering and Coagulation of Dust Grains in Interstellar Turbulence

Hiroyuki Hirashita (平下博之) (ASIAA, Taiwan)

- 1. Dynamical Grain-Gas Coupling
- 2. Interstellar Turbulence
- 3. Formulation of Shattering and Coagulation
- 4. In a Cosmological Context

1. Dynamical Grain-Gas Coupling

NGC 253 Kaneda et al. (2009) color: *AKARI* 90 μm contour: *ROSAT* X-ray The FIR extension

coincides with the X-ray structure.

Dust is transported by gas ejection induced by stellar activity.

Large grains tend to be coupled with larger motions.

2. Interstellar Turbulence

Large grains tend to be coupled with larger motions.

Kolmogorov turbulence: $V_{turb} \propto I^{1/3}$

Large grains tend to acquire larger velocities.

Gyroresonance

Magnetic fields $(B^2/8\pi \sim nkT)$ + Grain charge \rightarrow MHD wave + gyro-motion of grains Resonance between wave and gyro-motion (gyroresonance): $\omega - k_{//}v \cos \theta = n\omega_{gyro}$

Large grains are further accelerated.

Grain Velocities

Warm ionized medium T = 8000 K $n_{\text{H}} = 0.1 \text{ cm}^{-3}$ $B = 3.4 \,\mu\text{G}$

Warm neutral medium T = 6000 K $n_{\text{H}} = 0.3 \text{ cm}^{-3}$ $B = 5.8 \,\mu\text{G}$

Dense cloud T = 10 K $n_{\text{H}} = 10^4 \text{ cm}^{-3}$ $B = 80 \,\mu\text{G}$

Grain Size Distribution and Extinction

Extinction (absorption+scattering)

$$\tau_{\lambda,i} = \int_0^\infty \pi a^2 Q_\lambda(a) N_{\text{dust}}(a) da$$
$$\tau_\lambda = \sum_i \tau_{\lambda,i}$$

a: grain radius (<~ 0.1 µm) $Q_{\lambda}(a) \sim 1$ for $\lambda < a$ $Q_{\lambda}(a) << 1 \propto a$ for $\lambda >> a$

i: grain species (silicate, graphite)

Grain size distribution $N_{dust}(a) \propto a^{-3.5}$ with 0.005 µm < *a* < 0.25 µm: MRN What determines the grain size distribution?

Source (supernova, AGB stars, etc.)
Shattering and coagulation?

FIG. 4.— Optical depths, for column densities of 10^{22} H atoms cm⁻², versus inverse wavelength. Solid line: observed by OAO. Triangles: the extinction of (C + OI) mixture of Fig. 2. Dashed line: the contribution of graphite to the extinction. Dots: a mixture of graphite and olivine, $n(a) \propto a^{-3.5}$, 0.005 μ m < $a < 0.25 \mu$ m, forced to fit at the maximum of the "bump" at 4.6 μ m⁻¹.

Mathis, Rumpl, & Nordsieck (1977)

Specific Questions

A) Evolution of grain size distribution by shattering and coagulation under the grain motion induced by *ubiquitous* turbulence.
B) Do shattering and coagulation have a significant imprint in the extinction curve?

3. Formulation

Hirashita & Yan (2009)

 $m_k + m_i$

Discrete size bins $a_0, ..., a_N$ The *i*-th bin contains grains of $\tilde{\rho}_i [g \text{ cm}^{-3}]$.

Shattering $\left[\frac{d\tilde{\rho}_i}{dt}\right]_{\text{shat}} = -m_i \tilde{\rho}_i \sum_{k=1}^N \alpha_{ki} \tilde{\rho}_k + \sum_{j=1}^N \sum_{k=1}^N \alpha_{kj} \tilde{\rho}_k \tilde{\rho}_j m_{\text{shat}}^{kj}(i),$ $\alpha_{ki} = \begin{cases} \frac{\sigma_{ki} v_{ki}}{m_i m_k} & \text{if } v_{ki} > v_{\text{shat}}, \\ 0 & \text{otherwise}, \end{cases} & \text{distribution of shattered fragments} \\ \text{(power-law)} \end{cases}$ Coagulation $\begin{bmatrix} \frac{\mathrm{d}\tilde{\rho}_i}{\mathrm{d}t} \end{bmatrix}_{\mathrm{coag}} = -m_i \tilde{\rho}_i \sum_{k=1}^N \alpha_{ki} \tilde{\rho}_k + \sum_{j=1}^N \sum_{k=1}^N \alpha_{kj} \tilde{\rho}_k \tilde{\rho}_j m_{\mathrm{coag}}^{kj}(i),$ $\int \frac{\sigma_{ki} v_{ki}}{\mathrm{d}t} \quad \mathrm{if} \quad v_{ki} < v_{\mathrm{coag}}^{ki},$ $\alpha_{ki} = \begin{cases} \frac{\sigma_{ki} v_{ki}}{m_i m_k} & \text{if } v_{ki} < v_{\text{coag}}^{ki}, \\ 0 & \text{otherwise.} \end{cases}$

The grain velocities are adopted from Yan et al. (2004) (MHD turbulence).

Grain Velocities

MHD turbulence model

Yan, Lazarian, & Draine (2004)

hydro-drag, gyro-resonance

Warm ionized medium T = 8000 K $n_{\text{H}} = 0.1 \text{ cm}^{-3}$ $B = 3.4 \,\mu\text{G}$

Warm neutral medium T = 6000 K $n_{\text{H}} = 0.3 \text{ cm}^{-3}$ $B = 5.8 \,\mu\text{G}$

Dense cloud T = 10 K $n_{\text{H}} = 10^4 \text{ cm}^{-3}$ $B = 80 \,\mu\text{G}$

Results

Effects on the Extinction Curves

- The UV slope the bump stren sense.
 The central post
 Shattering and Coagulation in ISM can regulate the grain size distribution (and the extinction)
 - carbon bump is curve).
- (3) Small variation in IK extinction curve.

4. In a Cosmological Context

Suggesting a rapid dust enrichment by supernovae

Shattering of SN Dust

Small grain production by shattering contributes to the steepness of the UV extinction curve (**in solar metallicity**).

Scenario as a Summary

(1) The grain size distribution in the formation by supernovae (or AGB stars) is not processed by turbulence if the metallicity is $<< 1/10 Z_{\odot}$.

- (2) After the metallicity enrichment, grain processing in ISM should be considered.
- (3) In considering the origin of the grain size distribution at the present cosmic age, interstellar processing by turbulence should be important (occurs everywhere → easy to explain the universality).

Thank you.

3. Effects of Coagulation on SF

Hirashita & Omukai (2009)

- (1) How about the denser regime?
 (2) Importance of dust grains in star formation:
 A) H₂ formation (H₂ is an efficient coolant for Z < 0.01
 - Z_{\odot}) \Rightarrow The grain surface *S* is important.
 - B) Dust cooling \Rightarrow The grain opacity κ_{P} is important.

We calculate the variation of *S* and κ_P in star-forming (collapsing) clouds.

Grain motion is assumed to be thermal.

Gas Evolution in Collapsing Clouds

Omukai et al. (2005)

Change of Grain Surface and Opacity by Coagulation

Change of Grain Surface and Opacity by Coagulation

Physical Considerations

☆ Grain surface is dominated by small grains. → Once the smallest grains are affected by coagulation, *S* begins to decrease (however, H_2 formation occurs faster).

• $t_{\rm ff} > t_{\rm coag} \Leftrightarrow n_{\rm H} > 10^7 (Z/Z_{\odot})^{-2} (T/30 \text{ K})^{-1} \text{ cm}^{-3}$ \Rightarrow Opacity ($\kappa_{\rm P} \propto \pi a^2 Q_{\lambda} \propto a^3$) is only a function of mass as long as $a \ll \lambda$. $\Rightarrow \kappa_{\rm P}$ does not change even if coagulation proceeds.

Coagulation has no effect on the thermal evolution in protostellar collapse.

1. Dust Grains in Galaxies

