「はやぶさ」 リエントリーの 地上観測

石原吉明(国立天文台 RISE月探査プロジェクト) 「はやぶさ」リエントリー地上観測チーム

本日のお話

- 観測の背景
 - 流星・火球・隕石落下の研究
 - カプセルリエントリーは隕石落下である
- オーストラリアでの観測
 - WPA見渡す限り地平線・4WDで疾走
 - 観測点設置
- 取得データ・初期解析結果の紹介
 - リエントリー画像・動画
 - 音も聴こえた!!
 - インフラサウンド・地震計測結果

流星·火球

- 最も馴染み深く、親しまれている天文現象
 - しし座γ流星群やペルセウス座γ流星群などの群流星や散在流星
- 流星体が地球大気と衝突し発光する現象
- 一般に金星よりも明るい流星を火球と呼ぶ
- ごく希に燃え尽きずに地表に達したのが「隕石」

流星研究 - 1-

- 群流星の出現予測
 - しし座 r 流星群などでは、流星体の軌道計算をもとに、数分-数十分程度の精 度で予測可能
- 流星体の組成
 - 流星の分光観測…
 - Leonid MAC=彗星観測との位置づけで1998-2002
- 落下経路
 - パトロールカメラ(写真・ビデオ)
 - 北米・ヨーロッパでは軍事衛星によるIRデータ<=データアクセスに問題
 - 目撃証言=精度の点に問題

流星研究 -2-

発光メカニズム・アブレーション

- 一応理論はあるが、不明な点多数
- 分光観測… 何が光っているのか?
- 落下中の流星体の挙動
 - まだまだよくわかっていない。
- 元となるデータ
 - 光学観測データ
- ・光学データ以外に使えるデータは?

新たな流星研究 - 1-

- 流星体が地球大気と衝突することにより…
 - 発光する現象

★衝撃波を励起する現象

- 流星はMeteoroidが超音速で大気中を飛行 (11-71km/s)
 - ◆ 波面が円錐形の衝撃波
- Meteoroidは、内部衝撃波が自身の結合強度を 上回ると、爆発分裂する。
 - ◆ 波面が球形の衝撃波

新たな流星研究 -2-

- ・観測網の発達
 - 微気圧計測網
 - 核実験探知目的
 - 火山の爆発的噴火観測目的
 - 地震観測網
 - ◆ 衝撃波は地表に達すると地面とカップリングし地動を励起。
 - ◆ 微小地震観測を目的として展開された短周期地震計が地動を感知
- 衝撃波の到着時データ
 - 衝撃波を励起したMeteoroid(火球)の落下経路
- 衝撃波の振幅データ
 - 衝撃波の振幅は、流星体の大きさや速度に依存していると考えられる
 - AblationによるMeteoroidの落下中のサイズ変化を導き出せる可能性

地震計に記録された衝撃波

1998年宮古火球による衝撃波が励起した地動 東北大学沢内観測点上下動成分の波形

気象庁

Hinet

Seismic Detection of the 2003 Kanto Bolide

Seismic Detection of the 2003 Kanto Bolide

Trajectory of 2003 Kanto Bolide

Doromotor	Search	Grid	Optimum Value and
rarameter	Domain	Interval	Confidence Interval
v [km/s]	11 ~ 30	1.0	14.0 +10/-3
x_0 [km]	$0 \sim 180$	1.0	80 +7/-7
y_0 [km]	0~150	1.0	99 +6/-7
γ [°]	210 ~ 250	0.5	229.5 +1.5/-1.5
θ [°]	$10 \sim 30$	0.5	15.5 + 1.0 / - 1.0
t ₀ [s]	0 ~ 100	1.0	68 +8/-8

*The origin is (36 °N, 141°E, 0) at 22h06m40s JST.

神戸隕石

- 日時:1999年9月26日 20時22分頃
- 落下地点: 兵庫県神戸市北区
- 隕石種: CK-4 (Tomeoka et al., 2000)
- 回収質量: 136 g
- 未回収分を含めるともう少しありそう?
- 地震観測点7点で衝撃波シグナルを検出

Meteoriod Size Estimation Using Seismic Data

Work Flow

Ground Motion Amplitude to Shockwave Overpressure

$$\Delta p = \frac{2\omega(\lambda + \mu)}{-\hat{C}} \left(\frac{\mu}{\lambda + \mu}\right) u_z$$

-Ben-Menahem and Singh [1981]-

- Δp ...shock wave overpressure at the station [Pa]
- ω ...angler frequency of ground motion [rad/s]
- μ \dots first Lamé's parameter of the station
- λ ... second Lamé's parameter of the station
- u_z ...vertical ground displacement [m]
 - ...apparent velocity of the shock wave [m/s]

 $\mu = \rho v_s^2$ $\lambda = \rho (v_p^2 - 2v_s^2)$

Ĉ

Shockwave Overpressure to Meteoroid Size $R_o \approx M \cdot d_m$

- R_o ...conical shock wave relaxation radius [m]
- M ... Mach number of meteoroid
- d_m ...meteoroid diameter [m]

$$\frac{\Delta p}{p_0} = \frac{2\gamma}{\gamma + 1} \left(\frac{0.4503}{(1 + 4.803x^2)^{3/8} - 1} \right) \left(\frac{p_z}{p_0} \right)^{1/2}$$
$$x = R / R_0$$

- ReVelle [1976] Equation 14 -

- ReVelle [1976] Equation 25 -
- Δp ...shock wave overpressure at station [Pa]
- Po ...hydrostatic pressure at station [Pa]
- P_z ...hydrostatic pressure at source altitude [Pa]
 - ...the ratio of the specific heat of air at constant pressure to that at constant volume (=1.4)
- R ...radial distance from the source [m]
 - ...conical shock wave relaxation radius [m]

γ

R_c

Parameters of HAYABUSA Reentry

- Date and Time: June 13, 2010 / 14:00 UT
- Location: Woomera Prohibited Area @ Australia
- V_{int} :~ 12 km/s
- Size: 40 cm (capsule)
- Material: Carbon Phenolic (heat shield)

Parameters of HAYABUSA Reentry

- Date and Time: June 13, 2010 / 14:00 UT
- Location: Woomers D
 This is the third artificial
 This is the third fall !!
- Naterial: Carbon Phenolic (heat shield)

GOS Observations

Optical Tracking

- Determination of Trajectory

* TPS Science

- Measurement of the Heating History of TPS

* Spectroscopy

- Determination of What Elements Emit Light in the Meteor Head and Wake.

Infrasound / Seismic

- Detection of Shockwaves Generated by Hypersonic Flight of Capsule and S/C.
- Detection of Shockwaves Generated by Energetic Fragmentations of S/C.

Previous Plan...

Previous Plan...

Infrasound / Seismic Instruments

- Chaparral Physics Model-2 ×2
- Chaparral Physics Model-25 ×3
- 4.5 Hz vertical velocity type seismometer x 20
- 4.5 Hz tri-axes velocity type seismometer × 2
- ✓ DATAMARK LS-7000
- ✓ DATAMARK LS-8200SD

Infrasound-Seismic Array Observation (GOS2)

Array geometry will be measured using totalstation.

2010年7月28日水曜日

Infrasound-Seismic Array Observation (GOS2A)

Infrasound-Seismic Array Observation (GOS2B)

Why Array Observation?

- Easy & Robust Detection of Shockwave Signal(s).
- To Estimate Direction of Shockwave Arrival(s).
 - ➡ F-K Spectrum (Beam Forming / MUSIC)
 - independent estimation by particle motion of tri-axes (vertical / n-s / e-w) seismogram
- To Estimate Elastic Parameters of Ground.
 - Seismic Interferometry
 - Array Analysis (e.g., SPAC)

野犬にズタズタにされたGOSアンテナケーブル

Obtained Data

Photos

- Movies
- Spectrum
- Infrasound Signals at 3 stations
- Seismic Signals at 6 stations
- Audible Sound Signals !!

Audible Sound

GOS2 waveform

GOS2A waveform

微気圧変動	GOS2A-P1 P JUN 13 (164), 2010 22:50:00.000
	GOS2A-P2 P JUN 13 (164), 2010
	GOS2A-P3 P JUN 13 (164), 2010 -
地動変位(上下)	GOS2A-S1 UD JUN 13 (164), 2010 22:50:00.000
	GOS2A-S2 UD JUN 13 (164), 2010 22:50:00.000
	GOS2A-S3 U) JUN 13 (164), 2010 22:50:00.000
	GOS2A-S4 UD JUN 13 (164), 2010 22:50:00.000
- - - - -	GOS2A-S5 UD JUN 13 (164), 2010 - ~~~22:50:00.000
-	 GOS2A-S6 UD JUN 13 (164), 2010 - 22:50:00.000

GOS2B waveform

GOS2 particle motion

GOS2 particle motion

GOS2 particle motion

Array Analysis (GOS2 I-IOHz Band) MUSIC Beam

Array Analysis (GOS2 I-IOHz Band) MUSIC Beam

SUMMARY

- HAYABUSA have Returned to the Earth at 13th June, 2010.
- HAYABUSA Reentry is Good Analogue of Meteorite Fall.
- We have Done Some Kinds of Observations as Follows...
 - * Optical Tracking
 - Determination of Trajectory
 - * TPS Science
 - Measurement of the Heating History of TPS
 - * Spectroscopy
 - Determination of What Elements Emit Light in the Meteor Head and Wake.
 - * Infrasound / Seismic
 - Detection of Shockwaves Generated by Hypersonic Flight of Capsule and S/C.
 - Detection of Shockwaves Generated by Energetic Fragmentations of S/C.