

The **Cassini/Huygens Mission** to SATURN

One Ring

TO RULE THEM ALL

Lord of the Rings

Dr. R. Srama MPI Nuclear Physics, Heidelberg, Germany University Stuttgart

Kobe, March 2010

GALILEO TO KEPLER 1610

ALTISSIMUM PLANETAM TERGEMINUM OBSERVAVI

"The most distant planet has a three-fold shape !"

"Der entfernteste Planet hat eine dreifache Form"

(discovery of Saturn's ring)

CHRISTIAAN HUYGENS

- mathematician and physicist of the netherlands
- (*1629, †1695)
- interpretation of Saturn's ring
- discovery of the large moon titan (1655)

GIOVANNI CASSINI

- french astronomer and mathematician
- (*1625, †1712)
- discovery of 4 Saturn moons and the ring division

Saturn's Satellites and Ring Structure

SATURN!

1 Saturn year : Rotation : Distance to Sun : Diameter at equator : Mass: Volume : **Density**: Strong pole oblateness Magnetic field : Dipole field axis = rotation axis ! ring plane :

29.5 y 10 h, 40 min 1400 Mkm 120.000 km 95 x Earth 760 x Earth 0.7 g/cm^3 (Earth 5.5)

4x10-5 T at pole (Earth : 5x10-5 T)

27° tilted towards orbit plane

SATURN'S INTERIOR

Atmosphere : 94 % H, 6% He T at upper cloud boundary : 150 K T at cloud lower boundary : 80 K T in center : 20.000 K, 5×10^12 P (Earth: 3800 K) emission of heat (inner heat source) heat flux 120% of solar irradiation I-Hydrogen I-He metal-silicate metl-H

core

WINDS OF SATURN (UPTO 500 M/S)

MOON MYSTERIES

- Pandora and Prometheus are shephard moons for ring
- Dione and Tethys have own moons
- Janus and Epimetheus exchange their orbit
- Iapetus has a dark and bright side
- Mimas has a huge impact crater (1/4 of surface)
- Enceladus is active (ice geysers), highest albedo
- Phoebe has a retrograde orbit, KB object caught by Saturn (?)

CASSINI/HUYGENS

CASSINI SPACECRAFT

COSMIC DUST ANALYSER

- HUYGENS PROBE

CASSINI FACTS

Program partners : NASA, ESA, ASI 17 countries international engineers and scientists: 5000 costs : 1.4 billion (pre-launch development) \$710 M mission operations \$ 54 M tracking \$422 M launch vehicle \$ 500 M ESA (Huygens) \$ 160 M ASI \$ 3.27 billion, U.S. \$2.6, Europe \$ 660 M

CASSINI BUS

dry mass 2.11 + 320 kg Huygens probe + 3.1 t propellent = 5.7 t height : 6.8 m, 4m antenna, boom 11 m 22.000 wire connections, 12 km cabling largest interplanetary S/C ever launched 3 RTGs, 750 W + small radio-isotope heaters everywhere Main Engine : Mono-methyl-hydrazin, N-tetraoxid oxidator 16 small thrusters (Hydrazin) Inertial Reference Unit - perform turns/firings while retain knowledge of own position X Band, 20 W, Ka, S, Ku ADA software, 2x2 Gbit Solid State Recorder, IMB memory for command subsystem, I6 kB PROM redundant computers 4 Gyros, cover for main engine Main engine : 445 Newton, gimbaled to maintain vector if CoM changes

CASSINITRAJECTORY

CRUISE SCIENCE: NOT ONLY SATURN ...

Cassini searches for gravity waves with radio science subsystem

Cassini confirms general relativity theory during conjunction (Cassini - Sun - Earth) in June 2002, Nature 2003

EINSTEIN WAS RIGHT

frequency shift after corrections

JUPITER SCIENCE 2000

DUST FROM JUPITER "Io Ashes"

"Io Ashes" - Stream Particles

- Origin: Io Volcanoes
- Size: 5 ... 40 nm
- Dynamics Dominated by EM Forces
- Fast Enough to Escape
 From Jovian System
- Allow to Monitor Io Activity

Speed of nano-dust : > 100 km/s

lo as a Dust Source: Nano-Dust Coupling to Magnetosphere

Side View

Top View

A. Graps

Io as a Dust Source in the Jovian System

- Streams of electrically charged dust grains emanating from the jovian system (Grün et al., 1993)
- 26 day periodicity (Krüger et al., 2006)
- Interaction with interplanetary magnetic field
- Grain radii: ~ 10 nm, speeds > 300 km/sec (Zook et al., 1996)
- Jupiter's magnetosphere: giant dust accelerator
- Source: lo (Graps et al., 2000)
- Confirmed during 2nd Jupiter flyby in 2004 (Krüger et al. 2006)
- Stream formation due to CIR and CME interaction (Flandes & Krüger, 2007)

H. Krüger

Ulysses

Dust Streams: A Monitor of Io's Volcanism

Average lo dust emission: ~0.1 - 1 kg s⁻¹
Small compared to ~1 ton s⁻¹ of plasma ejected
Peaks in dust emission coincide with largest surface changes
Dust condensation in plumes

lo, Galileo

<u> Grün et al. 1998</u>

Dust impact rate correlated with

Jupiter's 10h rotation period

Periodogram of Galileo data

Composition Of Io's Volcanic Matter

Time o<u>f Flight</u>

Cosmic Dust Analyser (CDA)

Dust detector on Cassini spacecraft:

dust mass/velocity: impact ionisation detector

chemical composition: time of flight mass spectrometer

dust charge/velocity/impact angle: charge sensitive entrance grids

high rate detector (HRD)

CDA measurement range

Sensitive area:
Dust speed:
Dust mass:
Dust charge:
Dust composition:
Impact counting rate:

0.1 m² 1-100 km s⁻¹ 10⁻¹⁵-10⁻⁹ g (@20 km s⁻¹) 10⁻¹⁵ - 10⁻¹³ C 20-50 mass resolution 1/week-10000/s 1000 times more sensitive than optical measurements

CDA finds one particle within one km³

CDA Science Highlights I (Cruise)

- Streams of nano-dust from Saturn : Discovery, compositon and dynamics, coupling between CIRs/CMEs and dust stream dynamics (S. Kempf, Nature)
- Origin of particles detected during the approach to Saturn is the A ring
- Composition of these particles: silicates

SIMULATION OF ESCAPING DUST STREAMS FROM SATURN (M. HORANYI)

DUST STREAM MODELING

S. Hsu

SATURN APPROACH

PHOEBE

Flyby : 2004, June 11 ice-rich moon coverd with dark material bright crater edges

190 m/pixel

PHOEBE CRATER 80 M/PIXEL

A COMET LIKE OBJECT

Phoebe Imaging Mosaic

Infrared Reflectance

Carbon Dioxide Locations

Ferrous Iron

Unidentified Material

Water Ice

CO2 indicator for KuiperBelt origin

> retrograde orbit

ORBIT INSERTION

SATURN ORBIT INSERTION

Saturn System Tour Trajectory

Saturn's Atmosphere

ISS team

near IR , 890nm 14. Dec. 2004 Distance: 595,000 km Pixel : 32 km

SIZE DISTRIBUTION OF RING PARTICLES

Cassini Visual and Infrared Mapping Spectrometer

grain-size composite

DIRTY RINGS

inside

Infrared Reflectance Water Ice Strength

"Dirt"

Color Composite

RINGS IN THE UV

ENCKE GAP IN A RING BY THE MOON PAN

WAVESTHROUGH THE RING

200.000km, 1 km/pixel

MOON - RING INTERACTION

moon causes gap and changes eccentricity of ring particles

calculation/ discovery of small embedded moons by analysing ring waves

(Julian & Toomre 1966, Lin & Papaloizou 1979)

DENSITY WAVES IN THE RING

WAVES IN THE UV

UV STAR OCCULTATION

RING PLANE CROSSING

F RING WITH SHEPHERD MOONS PROMETEUS AND PANDORA

FRING Shepherd moon prometheus (102 km)

SHADOW OF EPIMETHEUS

MOON DAPHNIS (8 KM) ON INCLINED ORBIT WITHIN THE 42-KILOMETER WIDE KEELER GAP (A RING)

1500 m tall = 150 xthickness

97-8422

NEON LASSO CHARGED PARTICLES STRIKE THE HYDROGEN ATMOSPHERE

HEXAGON ATTHE POLE

IAPETUS - DICHOTOMY

EVAPORATION OF WATER ICE ON LEADING SIDE (MICROMETEOROID IMPACTS)

MANY MANY MORE ...

Titan lakes Titan dunes Rhea ring Radiation belts MAPS in-situ results

LAKES AND DUNES - TITAN

HUYGENS

.

.

•

•

15

• N

COMPARE EARTH - TITAN

MODEL OFTITAN'S ATMOSPHERE

HUYGENS PROBE (ESA)

Titan atmosphere, winds, composition, temp., pressures,...

Separation - 25. dec 2004 Titan atms entry: 14. Jan 2005 entry angle : 65° (+/- 3°) entry speed : 6.1 km/s peak decceleration : 10-19 g peak heating : 500-1500 kW/m^2 decent time : 2:30 h

METHANE SOURCES?

PREDICTION AND MEASUREMENTS OF TITAN'S ATMOSPHERE : GOOD AGREEMENT

ACCELEROMETER AT LANDING

ACC-I Mode 4

HUYGENS LANDING SCENARIOS

TITAN SURFACE PREDICTION AND REALITY

SCIENCE PLANNING ! EXAMPLE : CIRS

OBSERVATION PLANNING

10:54:08 TRIGGER DISTRIBUTED RADIO & PLASMA WAVE SCIENCE SEQUENCE TYPE = ID

11:06:10 BEGIN TARGETING SCART

11:06:10 SET SPACECRAFT OFFSET TURN RATE AND ACCELERATION PARAMETERS; TURN RATE X

11:06:11 SPECIFY BASE SPACECRAFT ATTITUDE PRIMARY

11:06:16 BEGIN ISS_SUPPORT_IMAGING BLOCK

ROCKING CASSINI: DUST DYNAMICS

DUST DENSITY

Comparison : Optical measurements

Enceladus : Source of ice grains (E ring)

- Size: 499 km
- Density: 1600 kg/m³
- 70 km Ice Crust on Rocky Core

ENCELADUS FLYBY PLANNING

Ejecta Production

Meteoroid Impacts Splash up Ejecta

Sremcevic et al., Icarus, 2005

Mass Yield ~ 4000 Koschny & Grün, Icarus, 2001; Krivov et al., Icarus, 2003

- Gravitationally Bound
 Ejecta Populate Cloud
- Some Ejecta Escape:
 - Feed Rings
 - Mass Loss
 Mechanism

Discovery (MAG, INMS, CDA): South Pole Ice Geysers

Spahn et al., Science, 311, 2006

peak rate not at closest approach

Geyser Grains Slower Than Escape Speed

Hill Radius ~ 950 km

Escape Speed ~ 207 m/s

Snow on Enceladus !

Kempf et al., 2009

Salty icy grains : Direct Evidence for Subsurface Liquid Water Reservoir

Water + Rocky Core

Water Dissolves Akali Salts

Zolotov, Geophys. Res. Lett., 34, 2007

Ice Grains Should be Salty!

Dust Composition

Cassini Dust Detector CDA

Geyser Water Ice Grain $(H_2O)H^+$ $(H_2O)_2H^+$ $(H_2O)_3H^+$ $(H_2O)_4H^+$ $(H_2O)_5H^+$ $(H_2O)_6H^+$

I9 37 55 73 91 109 Mass (u)

TOF Mass spectra (Cassini-CDA) < 6 km/s

Cluster length

16 km/s

Salty Ice Grains - measured in E ring

Co-Added CDA Spectrum:

Salt-rich Geyser Ice Grains (6%)

Lab Spectrum:

Laser Dispersion of Salt Water

Postberg et al., Nature, 2009

Results from Dust Measurements: Enceladus Ocean

"Soda" Ocean

Rich in Carbonates

рН ~ 9

Salinity ~1% (Earth 1...4%)

Postberg et al., Nature, 2009

ARTISTS WERE ALMOST RIGHT

ENCELADUS REALITY

<u>thanks</u> to: NASA/JPL S. Kempf, G. Moragas-Klostermeyer F. Postberg, E. Grün, M. Burton, M. Roy S. Hsu, H. Krüger, M. Horanyi, U. Beckmann, P. Strub, N. Altobelli, V. Sterken, J. Schmidt, F. Spahn, ... Cassini-CDA project grant by DLR