# Planetary Growth with Fragmentation and Gas Drug



Hiroshi Kobayashi (Jena Univ)



### contents

- Introduction
- Embryo Growth
- Final Embryo Mass
- Discussion

# Fragmentation

- Asteroids, Edgeworth-Kuiper belt
  - Family
  - Size distribution
- Debris disks



NASA, ESA, and P. Kalas (University of California, Berkeley)













### Embryo Growth with Fragmentation

- Planetary embryos grows by accretion with planetesimals.
- Massive embryos induce distractive collisions between planetesimals.
- Fragmentation reduces the final embryo mass.









# N-Body Simulation

- Direct *N*-body simulation is most reliable for the embryo growth.
- If fragmentation is neglected.
- Comparison with *N*-body simulation for the case without fragmentation to validate our simulation.









# Embryo Growth





#### Planetesimals

Fragments





### collision cascade Fragments Planetesimals





#### collision cascade Fragments ← Planetesimals





#### collision cascade

Fragments <----- Planetesimals



#### collision cascade

#### Embryo

#### Fragments <----- Planetesimals





# Collision cascade Fragments ← Planetesimals mass

remove





# Final Embryo Mass



## Final Embryo mass



### Isolation Mass



# $M_{\rm iso} = 2\pi ab\Sigma$

a: distance
b: separation
Σ: surface density

### Distance



 $r_0 = 10 \text{ km}$ MMSN

### Initial Planetesimal



10<sup>7</sup> yr at 3.2AU MMSN



10<sup>7</sup> yr at 3.2AU 10MMSN

## Conclusion

- The final embryo mass is much smaller than the isolation mass.
- Our analytical formulae are consistent with the final mass.
- Embryo mass reaches the critical core mass at 3-4AU for  $r_0 > 100 \text{ km}$  and > 10 MMSN