

Thermal anomalies in Central Elysium Planitia and Arsia Mons. Evidence and implications of aerothermal systems

Téodolina LOPEZ PhD Advisors : David Baratoux Michel Rabinowicz

Seminar in Kobe Institute 12/10/2009

Kopin light isle= ir veitimitabis

A new word

Aerothermal system Air

Contents

I/ Introduction

1) Recent finding : Aerothermal systems in terrestrial volcanic soils

Application to Mars : search for aerothermal systems in permeable soils

II/ Martian surface temperature

- 1) Data
- 2) Interpretation

III/ Part. 1: Case of Cerberus Fossae

- 1) Geological setting and morphology
- 2) Thermal study
- 3) Modelling the aerothermal system

IV/ Part. 2: Case of Arsia Mons' skylights

- 1) Geological setting and geometric characteristics
- 2) Thermal study

3) Local and regional aerothermal systems at Arsia Mons

V/Conclusion

Location of Formica Léo

Antoine et al., JVGR 2009

Introduction \longrightarrow Aerothermal systems in terrestrial volcanic soils \longrightarrow Location

Formica Léo

a) Blocks : bottom SE crater (A)b) Fine lapillis: top of Formica Leo (D)

Picture of Formica Léo with the classes material location.

Antoine et al., JVGR 2009

Introduction ____ Aerothermal systems in terrestrial volcanic soils ____ Formica Léo

Thermal study

Introduction 🔔 Aerothermal systems in terrestrial volcanic soils 🔔 Formica Léo

Thermal conductivity

• <u>Definition</u> : It is the property of a material that indicates its ability to conduct heat. It is expressed in Watt/Kelvin/meters.

Presley and Christensen (1997) have shown that thermal conductivity increases with increasing particle size and atmospheric pressure.

• Piqueux and Christensen (2009) : Their thermal model reproduces the thermal conductivity dependency of a sample with grain size and pressure and also confirms that higher porosities generally lead to lower conductivities.

2D Numerical model _ Presentation

Notation and values used for the model

2D Numerical model _ Results

Air convection within the craters can explain the observed temperature pattern.

Antoine et al., JVGR 2009

Measurements of Spontaneous Potential (SP)

Picture of Formica Léo with the SP profiles (P1 to P5).

SP profiles (solid lines) and temperature profiles extrat from the thermal images (dotted lines).

Air convection within the craters can have an influence on the SP patterns.

Antoine et al., submitted 2009

Introduction ____ Aerothermal systems in terrestrial volcanic soils ____ Formica Léo

Air convection at the scale of Piton de la Fournaise

Antoine et al., submitted 2009

- a) Piton de la Fournaise SP map. Two peaks, reaching 2V, are observed on the terminal cone.b) Possible link with the meteoritic
 - water infiltration.

- a b) Pluricentimetric and plurimetric fractures near the Bory-Dolomieu Caldera.
- c-d) Fractures thermal images near the caldera (4 a.m)

Air convection at the scale of Piton de la Fournaise

Like for Formica Léo, the existence of hot fractures at the Dolomieu edges can be explained by air convection. This air convection can have an impact in the SP pattern observed on this volcano.

Antoine et al., submitted 2009

Contents

I/ Introduction

1) Recent finding : Aerothermal systems in terrestrial volcanic soils

Application to Mars : search for aerothermal systems in permeable soils

II/ Martian surface temperature

- 1) Data
- 2) Interpretation

III/ Part. 1: Case of Cerberus Fossae

- 1) Geological setting and morphology
- 2) Thermal study
- 3) Modelling the aerothermal system

IVI/ Part. 2: Case of Arsia Mons' skylights

- 1) Geological setting and geometric characteristics
- 2) Thermal study
- 3) Local and regional aerothermal systems at Arsia Mons

V/Conclusion

- Radiance at the sensor,
- Surface temperature obtained by the black-body's law.

N

(*Mellon et al*, 2000)

 S/R^2 (1-A) cos(i) + F_{IR} + L $\partial m/\partial t$ + I $\sqrt{(\pi/P * \partial T/ \partial z')} = \varepsilon \sigma T_s^4$

1st term Insolation : \bullet

S = solar flux, R = orbital radius, A = surface albedo, i = incidence angle.

- 2nd term Thermal Radiation of atmosphere
- 3rd term Saisonal CO₂ condensation: $L = CO_2$ latent heat of sublimation, $m = mass of CO_2$ frost.
- 4th term : Subsurface conduction: I = thermal inertia, P = diurnal period, T = temperature, z' = depth normalised
- 5th term Radiations lost in space :

 ε = emissivity of the soil surface or CO₂, σ = Stefan-Boltzann constant, Ts = surface temperature.

• <u>Definition</u> :

$$I = \sqrt{(k\rho c)}$$

I = thermal inertia $(J/m^2/K/s^{1/2})$ k = thermal conductivity (W/K/m) ρ = density (kg/m^3)

c = thermal capacity (J/kg/K)

• <u>Practically</u>: It is the ability of the sub-surface to conduct and store heat energy away from the surface during day and to return that energy to the surface during the night.

Why temperature is varying?

Influence of the thermal inertia, the albedo, the surface pressure and the dust opacity on the variation of diurnal surface temperature (Mellon et al, 2000)

Standard uses of thermal data

Standard uses of thermal data

Martian surface temperature \rightarrow I

Interpretation

Contents

I/ Introduction

1) Recent finding : Aerothermal systems in terrestrial volcanic soils

Application to Mars : search for aerothermal systems in permeable soils

II/ Martian surface temperature

- 1) Data
- 2) Interpretation

III/ Part. 1: Case of Cerberus Fossae

- 1) Geological setting and morphology
- 2) Thermal study
- 3) Modelling the aerothermal system

IV/ Part. 2: Case of Arsia Mons' skylights

- 1) Geological setting and geometric characteristics
- 2) Thermal study
- 3) Local and regional aerothermal systems at Arsia Mons

V/Conclusion

Cerberus Fossae

6

60

the farmer

0

Context map : Location of Central Elysium Planitia.

Central Elysium Planitia

Cerberus Fossae ____ Geological setting

Cerberus Fossae

Central Elysium Planitia

- Young volcanic plain,
- Fracture width: 2 km,
- Fracture depth: 600 m,
- Slope $\approx 30^{\circ}$

Infrared image

- Two superposed thermal images in brightness temperature,
- Area warmer ≈ 220 K,
- Fracture center cold ≈ 190 K.

Relation between lithology and observed thermal behaviour?

Antoine, Lopez et al., submitted 2009

Cerberus Fossae _→ Morphology

170 Temperature (K) 220

9.20

Lithology _ Bedrocks

Antoine, Lopez et al., submitted 2009

Lithology _ Landslides scars

Antoine, Lopez et al., submitted 2009

Lithology _ Debris Apron

Antoine, Lopez et al., submitted 2009

Lithology _ Dunes

Mosaic of thermal images

 THEMIS visible image under infrared nightime image

Antoine, Lopez et al., submitted 2009

Comparison between temperature and topographic profile

Thermal image of Cerberus Fossae. Temperature and topographic profiles across the fracture with dunes in the bottom.

Antoine, Lopez et al., submitted 2009

Comparison between temperature and topographic profile

Thermal image of Cerberus Fossae. Temperature and topographic profiles across the fracture without dunes in the bottom.

There are no influence of the lithology on the temperature variation.

Antoine, Lopez et al., submitted 2009

Cerberus Fossae 🔔 Thermal study

Numerical model of air convection

Equations of the model:

Ra =
$$\rho_a g \alpha \Delta T H K / \mu \kappa$$

$$Ra_{eq} = \gamma Ra$$

Notation and values used for the model

Height of the box	н	500 m
Length of the box	L	1000 m
Slope of the box		30"
Heat capacity of the air	С,	850 J kg ⁻¹ K ⁻¹
Heat capacity of the rocks	C _p	6.37 × 10 ⁻⁴ J kg ⁻¹ K ⁻¹
Density of the porous debris aprons	(1-n) p	2000 kg/m 3
Air density	P _a	1.5 × 10 ⁻² kg m ⁻³
Air thermal expansion	a	4.5 × 10 ⁻³ K ⁻¹
Air Viscosity	μ	1.2 × 10 ⁻⁵ Pa.s
Air-soil volumic heat capacity ratio	Y	6.4 10 -6
Permeability of the soil	K	5 × 10 ⁻⁶ - 10 ⁻⁶ m ²
Thermal conductivity of the soil	k	0.4 W/m/K
Porosity of the soil	n	0.4
Top to bottom temperature contrast	ΔΤ	25 K
Average temperature of the atmosphere at the surface	T _o	180 K
Amplitude of diurnal temperature variations	A	40 K
Darcy velocity scale		6.3 × 10 ⁻⁵ m s ⁻¹
Geothermal heat flux(for $k = 2.5$)		20 mW/m ²
Equivalent Rayleigh number	Raeg	41 - 830

Antoine, Lopez et al., submitted 2009

Model results

Results

Plot of the observed infrared temperature (solid line), the surface convective temperature for a $Ra_{eq} = 45$ (dotted line) and the surface convective temperature for a $Ra_{eq} = 1000$ (dashed line)

The rim crest to floor temperature drop can be explained by a CO_2 convection for a $Ra_{eq} = 45$.

Antoine, Lopez et al., submitted 2009

Cerberus Fossae ____ Air convection model

 \succ Lithology, topography and surface albedo do not explain the thermal pattern,

 \triangleright CO₂ convection does explain the observed thermal behaviour :

- convection permits the transport of heat through the debris apron,

- for $Ra_{eq} = 45$, geothermal flux = 20 mW/m², the convective temperatures fit the observed temperatures.

Presence of aerothermal systems on martian permeable soils.

 \triangleright Others volcanic area might be possible candidates for this convection like the Tharsis region.

Contents

I/ Introduction

1) Recent finding : Aerothermal systems in terrestrial volcanic soils

Application to Mars : search for aerothermal systems in permeable soils

II/ Martian surface temperature

- 1) Data
- 2) Interpretation

III/ Part. 1: Case of Cerberus Fossae

- 1) Geological setting and morphology
- 2) Thermal study
- 3) Modelling the aerothermal system

IV/ Part. 2: Case of Arsia Mons' skylights

- 1) Geological setting and geometric characteristics
- 2) Thermal study
- 3) Local and regional aerothermal systems at Arsia Mons

V/Conclusion

Arsia Mons and pits location

Lopez et al., in preparation, 2009

Context map : Location of Arsia Mons

Geographical Information System (GIS) with MOLA, HRSC and THEMIS visibles images. White cross are pits previously discovered (Cushing et al., 2007) and red cross are pits discovered during this study.

Geological setting ____ Location

Pits presentation

Three pits images extracts from HiRISE.

Bar charts of the pits size distribution using $\sqrt{2D}$ interval of pits diameters.

Lopez et al., in preparation, 2009

Diameters

Pits presentation

쑷 D x0 х ^{CULTURINI,} a) d = - D² tan (90 - i) / 4($x_0 - D/2$) -×-Shadow $D \approx 1307 \text{ m}$ Schematic illustration of topographic model. a)

b) Application of the model in the biggest pit (i = Arsia Mor 64°). \rightarrow Geometric characteristic \rightarrow Depths

Lopez et al., in preparation, 2009

Incidence	Diameter(D)	X0	x0/D	Depths(d)	d/D	δd/d
34.00	198.50	-25.00	-0.12	117.53	0.45	0.73
38.00	287.04	-48.62	-0.16	137.21	0.44	0.63
40.00	198.75	-33.13	-0.16	88.81	0.44	0.58
41.00	170.30	45.11	0.26	208.31	0.43	0.58
36.00	216.25	-12.63	-0.05	133.25	0.42	0.68
37.00	152.500	-23.75	-0.15	77.15	0.42	0.65
36.00	103.00	-15.25	-0.14	54.68	0.41	0.67
34.40	116.50	6.07	0.05	94.96	0.40	0.74
64.00	330.00	-33.50	-0.10	66.89	0.40	0.24
64.00	985.00	122.50	0.12	319.73	0.39	0.24
64.00	1307.30	167.85	0.12	428.95	0.38	0.24
64.00	379.500	-32.75	-0.08	78.92	0.38	0.24
59.00	333.50	20.75	0.06	114.43	0.37	0.30
50.00	166.75	-7.38	-0.04	64.27	0.37	0.41
33.92	265.00	-74.86	-0.28	125.90	0.36	0.63
64.00	364.00	-30.50	-0.08	76.02	0.36	0.24
33.92	652.00	-231.68	-0.35	283.38	0.35	0.69
33.92	249.00	-87.82	-0.35	108.55	0.35	0.63
33.92	261.00	-88.58	-0.33	115.59	0.34	0.63
-0.38	115.79	0.34	0.63	33.92	276.00	-106.56
-0.36	82.29	0.33	0.60	33.92	191.00	-69.30
-0.32	190.29	0.33	0.68	33.38	412.50	-133.03
-0.38	285.32	0.32	0.71	33 38	663.00	-253.05
-0.18	55 59	0.32	0.53	33 38	101.00	-19.12
-0.22	59.36	0.31	0.54	33.38	113.00	-25.12
-0.12	130.13	0.31	0.26	60.19	571.50	-73 75
-0.03	54 99	0.30	0.23	60.19	207.00	-8.10
-0.09	69.27	0.30	0.24	60.19	287.50	-27.15
0.22	57.47	0.29	0.47	60.19	109.25	24.88
-0.06	43.23	0.29	0.22	60.19	170.50	-11.05
-0.22	75.94	0.29	0.22	61.91	411.60	-91.84
-0.41	147.41	0.29	0.68	32.81	346.00	-141.92
-0.28	84 15	0.28	0.61	32.81	171.00	-49 24
-0.28	81 34	0.23	0.61	32.81	163.17	-45.33
-0.16	62.75	0.27	0.55	32.81	107.00	-17.24
-0.39	155.23	0.27	0.68	32.81	360.00	-143 74
0.10	46.01	0.26	0.38	62.23	136.50	14.95
-0.35	172 35	0.26	0.50	33.44	388 50	-137.27
-0.37	125.53	0.25	0.47	43.67	420.00	-158.00
-0.35	44.84	0.25	0.40	43.67	147.00	-52.70
	02 40 51	115.00	25.22	0.21	110.00	0.24
0.5	0 40.51	102.50	23.22	0.21	119.88	0.23
0.9	40.51	200.00	125 7	0.19	73.07	0.24
0.4	40 47.00	299.00	-135./	-0.45	13.07	0.24
0.2	20 30.09	244.00	-29.70	-0.05	144.05	0.24
0.2	20 38.09	244.90	-80.//	-0.32	45.94	0.23
0.2	26 38.09	414.00	-8/.1/	-0.21	90.70	0.23
0.3	55 58.09	333.50	41.00	0.12	138.40	0.23
0.2	20 30.09	491.00	-31.89	-0.06	135.29	0.22
0.2	25 01.04	465.00	-154.90	-0.27	00.74	0.22
. 0.2	24 61.04	391.00	-99.56	-0.25	/1.68	0.22

Morphological values

Relation between pits and geomorphology

Raised ridges

Lopez et al., in preparation, 2009

Arsia Mons'

 \rightarrow Geological setting \rightarrow

Morphological map made with HRSC images. Geomorphologic map

Relation between pits and geomorphology

Preferential direction NE-SW > Tharsis Montes rift zone (extension area, Mouginis-Mark and Christensen, 2005)

Pits repartition in taking account the morphology associated at each pits. Sinuous rilles have the most important numbers of pits.

Lopez et al., in preparation, 2009

Arsia Mons'

 \rightarrow Geological setting \rightarrow

Thermal study of the pits

Extracts of THEMIS visible (a), infrared daytime (b) and infrared nightime (c) images (Cushing et al, 2007)

The study of the pits thermal signal is interesting because of their temperature. They are, in average, 10K warmer than the surroundings. Is this observation is compatible with a CO_2 convection?

Thermal behaviour of Annie

Plot of the thermal pattern at different acquisition date. Right corner extract from a THEMIS visible image.

Arsia Mons' slyligths ____ Thermal study ____ Evolution

Thermal behaviour of Dena

Plot of the thermal pattern at different acquisition date. Right corner extract from a THEMIS visible image.

Influence of the geometry?

Topographic influence on cooling during night (Baratoux et al, 2005)

Case B, the cooling is less efficient during night.

THEMIS sub-pixels modeling

a) HiRISE image extract of pits.

b) Infrared nightime image extract with the limits of hot pixels associated at pits

Hot pixels seems to exceeds the pits entrance. To confirm this observation, a thermal model tacking account sub-pixels temperature heterogeneity have been developed
Lopez et al., in preparation, 2009

Arsia Mons'

THEMIS sub-pixels modeling

2)

Arsia Mons²

T1 and T2 > pit and background temperature.

White grid > THEMIS spatial resolution. Displaced with an offset from 0 to 1 pixel.

Blackbody law applied to each pixel with two different temperature:

$$\int_{\lambda_1}^{\lambda_2} B(\lambda, T_{eff}) f(\lambda) d\lambda = p \int_{\lambda_1}^{\lambda_2} B(\lambda, T_1) f(\lambda) d\lambda + p \int_{\lambda_1}^{\lambda_2} B(\lambda, T_2) f(\lambda) d\lambda$$

Representation of the effective temperature at THEMIS resolution.

Model warmer surface exceeds the pit entrance

Lopez et al., in preparation, 2009

 \rightarrow Thermal study \rightarrow THEMIS model

Results

Observations : 17 hot pixels
Prediction assuming that the warm surface equal that of the sky hole : 9 hot pixel - 13 hot pixels

Thermal study

 \uparrow

Lopez et al., in preparation, 2009

Results

THEMIS model

 \rightarrow

Arsia Mons²

Results

Observations : 11 hot pixels
Prediction assuming that the warm surface equal that of the sky hole : 4 hot pixel - 7 hot pixels

• Comparison between model predictions and observations confirm that the warmer area exceeds the pit entrance. CO₂ convection can explain this observation.

Lopez et al., in preparation, 2009

Arsia Mons'

Results

Pits distribution

Location of pits across the topographic profile on the South flank. Colors are the ΔT between pits and surrounding.

In the compressive zone (slope break), most of the pits have a $\Delta T < 5K$.

Lopez et al., in preparation, 2009

Arsia Mons'

Thermal pattern of sinuous rilles

Thermal image of one sinuous rille located in the South flank. Temperature and topographic profiles across the sinuous rille.

Geometry of the sinuous rille> Length : 56 km, depth : 600 m, wide \approx 965 m

Lopez et al., in preparation, 2009

Arsia Mons³

Thermal pattern of sinuous rilles

Thermal image of one sinuous rill located in the South flank. Temperature and topographic profiles across the sinuous rille.

Geometry of the sinuous rille> Length : 36.5 km, depth : 520 m, wide \approx 3 km

Sinuous rilles have also a thermal pattern which can not be only explained by their shapes.

Lopez et al., in preparation, 2009

Arsia Mons²

2D Numerical model

Representation of the box used for the air convection model.

Lopez et al., in preparation, 2009

 \triangleright Pits formation : on an extensive region (rift zone), formed by the roof collapse of lava tubes.

➤ Temperature differences always observed during night, independently of seasons

➤ Radiative effects can not explain the pits thermal pattern.

> CO₂ convection is the best candidate for explaining the thermal behaviour.

 \triangleright Other arguments for this hypothesis : warm sinuous rilles and correlation between the pits temperature and compressive region .

Aerothermal system at the scale of Arsia Mons can exist and could explain the observed thermal pattern.

Conclusion

In Earth, aerothermal system was first observed in a volcanic soils where permeability is very high. First results on Mars shows that this

aerothermal system is also possible.

In Mars:

 \triangleright Cerberus Fossae is a young volcanic plain where thermal pattern can be explain by a CO² convection. This convection is enough vigorous to transport an important amount of heat, only possible where permeability is high.

➤ In Arsia Mons, pits thermal behaviour :

Are always observed (independently of season)

The geometric radiative effects can not explain the observations.

Pits seems to be warmer where extension is observed. It creates an area where vertical permeability is high, making easier the exit of the warm air.

Remaining questions:

- size of the convective cells (local and/or global volcano scale), indirect measurement of goothermal best flow

- indirect measurement of geothermal heat flow,

- search for the presence of alteration within a pit (data CRISM).

Pits :Common structures on solid planets?

Pits on Earth (Mauna loa)

Pit on Moon (Haruyama et al., 2009)

Pits on Mars (Cushing et al., 2007)

Thank you for your attention

oppritunt Re=#.vaandab