

SATELLITE FORMATION SUPPLY OF SOLID MATERIAL ONTO CIRCUM-PLANETARY DISKS

Takayuk Tanigawa (谷川 享行) Center for Planetary Science / ILTS, Hokkaido Univ.

NCU-CPS Japan-Taiwan Planetary Science Workshop 2009 (2009/12/09)

Satellite systems

- Regular and irregular satellites
 - Regular satellites:
 - Large fraction of total mass
 - Co-planner and circular orbits
 - → Formed in circum-planetary disks

Structure of circum-planetary disks

Structure of circum-planetary disks

Tanigawa and Watanabe 2002

Machida 2009

Previous studies

- Traditional model
 - Closed disk model with the "Minimum Mass Sub-Nebula"
 - Several severe problems
 - Temperature, accretion time, type I migration ...
- Canup and Ward model (2002, 2006)
 - Open disk model based on the knowledge of gas accretion flow onto gas giant planets
 - Solid material is steadily supplied to circum-planetary disks
 - $\circ~M_{satellites}$ / M_{planet} is consistent with the real systems
 - Sasaki et al is trying to explain the difference between Jovian and Saturnian systems.

Steady mass supply

Steady mass supply

Growth from outside

Steady mass supply

Growth from outside

Larger planets move inward Inner objects are swept

Steady mass supply

Growth from outside

Larger planets move inward Inner objects are swept

Continue until the mass supply terminates. Current satellites are the last generation of this cycle

Canup and Ward 2006

They reproduces total mass of satellite systems, but hard to explain the difference between Jovian and Saturnian systems

Sasaki, Stewart, and Ida model:

Did inner edge determine the difference between Jovian and Saturnian systems?

Magnetic field

inner edge

of the disk

- Analogy of star formation
 - CTTS stage \rightarrow strong magnetic field
 - Jupiter?
 - Inner edge exists
 - WTTS stage \rightarrow magnetic field weakens
 - Saturn?
 - No disk edge?
- How about gas giant planets?
 - Jupiter can terminate its growth by forming a gap
 - Mass supply suddenly stop
 - Frozen in the stage corresponds to CTTS?
 - Satellites are stacked?
 - Saturn mass is insufficient to form a gap
 - Mass supply gradually decreases with dissipation of proto-planetary disks
 - Evolved through the stage corresponds to WTTS?
 - Satellites fall to the planet easily.
 - Large satellites are likely to be at outer region

Previous studies

Traditional model

- Closed disk model with the "Minimum Mass Sub-Nebula"
- Several severe problems
 - Temperature, accretion time, type I migration ...
- Canup and Ward model (2002, 2006)
 - Open disk model based on the knowledge of gas accretion flow onto gas giant planets
 - Solid material is steadily supplied to circum-planetary disk
 - M_{satellites} / M_{planet} is consistent with the real systems.
 - Sasaki et al is trying to explain the difference between Jovian and Saturnian systems.
 - Assumptions
 - Solid material is supplied uniformly on the disks.

Objective

To determine distribution of supplying rate of solid material onto circum-planetary disks from proto-planetary disks.

Two manners of supplying solid material

- Smaller size (< m-size)</p>
 - Strongly entrained by gas accretion flow
- Larger size (> m-size)
 - Weakly affected by gas drag

An analytical estimation for larger size is shown.

Analytical model

Captured by gas drag with the disks

Assumptions

- Axisymmetry of circum-planetary gas disk with powerlaw surface density distribution
- Pericenter of orbit just after captured in the Hill sphere does not change in the course of circularization.

Capturing process

Before

Gravitational focusing

 $ightarrow r_{
m min} \propto r^2$ (centered near the planet)

Capturing process

Before

Gravitational focusing

 $ightarrow r_{
m min} \propto r^2$ (centered near the planet)

Critical radius to be captured

$$R_{
m c} \propto m^{-1/3(p+1)}$$
 $\Sigma_{
m gas} = \Sigma_{
m gas,0} \left(rac{r}{r_0}
ight)^{-p}$

Dissipation energy due to gas drag || Energy necessary to be captured by the gravitational potential

Capturing process

Before

Gravitational focusing

 $ightarrow r_{
m min} \propto r^2$ (centered near the planet)

Critical radius to be captured

$$R_{
m c} \propto m^{-1/3(p+1)}$$
 $\Sigma_{
m gas} = \Sigma_{
m gas,0} \left(rac{r}{r_0}
ight)^{-p}$

Dissipation energy due to gas drag || Energy necessary to be captured by the gravitational potential

After

Eccentricity and inclination decrease with keeping the pericenter

Supplying rate of solid material

 $(R_c = Critical radius to be captured)$

Supplying rate of solid material

 $(R_c = Critical radius to be captured)$

Supplying rate of solid material

Supplying rate of solid

$$\dot{\sigma}(\tilde{r}) = \frac{1}{2\pi} \left(\frac{9\pi}{128} C_{\rm D}^3 (A(i))^3 \right)^{2-\alpha} \left(\frac{\sigma_{\rm g,0}^3}{\rho_{\rm s}^2 m_{\rm max}} \right)^{2-\alpha} \left(\frac{\Sigma_{\rm d}}{\Omega_{\rm K}^{-1}} \right) \tilde{r}^{-1-3(p+1)(2-\alpha)} \frac{d}{d\tilde{r}} P_{\rm col}(\tilde{r}),$$
$$A(i) = \frac{2(3-2\sqrt{2}\cos i)^{1/2}}{3\sin i} (\sqrt{2}-\cos i)$$

Typically (
$$\alpha = 11/6$$
, a=5AU)
 $\dot{\sigma}(r) \sim 10^3 \mathrm{g \, cm^{-2} \, yr^{-1}} \left(\frac{\sigma_{\mathrm{g},0}}{10^3 \mathrm{g \, cm^2}}\right)^{1/2} \left(\frac{m_{\mathrm{max}}}{10^{18} \mathrm{g}}\right)^{-1/6} \left(\frac{\Sigma_{\mathrm{d}}}{10 \mathrm{g \, cm^{-2}}}\right) \left(\frac{\rho_{\mathrm{s}}}{1 \mathrm{g \, cm^{-3}}}\right)^{-1/3} \left(\frac{r}{10 R_{\mathrm{J}}}\right)^{-2}$

Tanigawa and Ikoma 2007

Mass supplying rate ∞ (gas surface density)^{1/2} Dust/gas ratio increases with decreasing disk gas? Satellite formation promotes late stage of formation of gas giant?

Migration due to gas drag?

 After circularization with short timescale, objects slowly spiral toward the planets by gas drag

Migration velocity due to the gas drag with disk gas:

$$egin{aligned} v_{r,\mathrm{S}} &= -2\eta\Gamma v_\mathrm{K} \ & & \ \Gamma = rac{ au_\mathrm{K}}{ au_\mathrm{stop}} & \eta \sim \left(rac{c}{v_\mathrm{K}}
ight)^2 \end{aligned}$$

How about the steady state distribution?

Steady state distribution

considering radial migration due to gas drag

For a single size swarm

Steady state distribution

considering radial migration due to gas drag

For a single size swarm

Steady state distribution

considering radial migration due to gas drag

For a single size swarm

For a power-law size

distribution

Test orbital calculations for captured satellitesimals

Basic equations

Gas drag term

$$\tilde{a}_{drag} = -\frac{3}{8}C_{D}\left(\frac{\rho_{g}}{\rho_{s}}\right)\tilde{r}_{s}^{-1}\Delta\tilde{u}\Delta\tilde{u}$$
 (Only inside the Hill's sphere)

Hydrostatic equilibrium in *z*-direction and axisymmetric

$$\rho_g(r, z) = \rho_0 r_{AU}^p \exp\left(-\frac{z^2}{2h_g^2}\right)$$
$$\Omega_g(r, z) = \Omega_{K,mid} \left[1 + \frac{1}{2} \left(\frac{h_g}{r}\right)^2 \left(p + q + \frac{q}{2} \frac{z^2}{h_g^2}\right)\right]$$
$$c^2(r) = c_0^2 r_{AU}^q$$

Example orbits

Example orbits (e=i=0, b=2.35, 2.41) Prograde 2.35, 2.41) Retrograde

Summary

- Solid supply onto circum-planetary disks
 - Capture of planetesimals by gas drag with circumplanetary disks
 - Analytical estimation
 - Distribution of solid supplying rate

 $\begin{array}{c} \dot{\sigma}_{\rm solid} \propto r^{-1-3(p+1)(2-s)} \\ \hline \sigma_{\rm solid} \propto r^{-2} \\ \dot{\sigma}_{\rm solid} \propto r^{-1} \end{array} \begin{array}{c} cf. \ \sigma_{\rm gas} \propto r^{-p} \\ for \, m-km \, \text{size} \ (s=11/6) \\ \hline \sigma_{\rm solid} \propto r^{-1} \end{array} \end{array}$

- Gradients of solid and gas surface density is generally different.
 - Dust/gas ratio is a function of radius
- Dependence of solid supplying rate on gas surface density
 - Proportional to (gas surface density)^{1/2}
 - \rightarrow Dust/gas ratio increases in the late stage