# Dust Grains & Debris Discs Ing-Guey Jiang National Tsing-Hua University Physics/Astronomy

## Outline

- Debris Discs
- Spitzer Results on the Vega
- Results in Jiang & Yeh (2009)
- The Vega Puzzle
- Recent Results

## The Vega & Debris Disc

- The Vega, one of the brightest nearby stars, typical example with a dust disc
- Vega-like stars: with dust disc (IR excess)
- Debris discs are the dust discs around Vega-like stars
- Dust grains produced by collisions of km-sized planetesimals





### The Formation of Debris Disc

- Dust grains collide and stick to form larger bodies
- Further growth into asteroid or proto-planets enormously
- Planetesimals may grow or break

### **Oblique collisions** – regular orbits



#### Head-on collisions - smaller object

### Planetesimals v.s. Dust Grains

- The planetesimals cannot be observed
- Dust grains can be observed by infrared
- The observational data of dust grains can help us to understand the planetesimals
- Spitzer's images on Vega's debris disc: Su et al. (2005)







### Su, Rieke et al. (2005)

- At R > 200 AU, surface density: 1/R profile (assume a uniform size distribution)
- A ring of planetesimals and asteroids between 86 and 200 AU
- The ring region produces new dust grains
- Dust grains are blown out
- We witness a recent event !

## Questions

- How could large grains be far away ?
- What is the effect of chemical compositions ?
- What is the effect of grain-size cut-off?
- How frequently the collisions shall be ?
- Does the self-consistent dynamical blowing-out picture exist ? We shall check

## Jiang & Yeh (2009)

- Assume the new dust grains are generated randomly from the ring area (86 to 200 AU)
- Dust grains feel the gravity and radiation pressure from the central star
- Consider effects of chemical composition, different grain-size cut-off, collision interval

### Initial Distributions









#### Table 1 The Ingredients of Models

| Model | Composition | Grain Density   | Time Interval | $a_{\max}$        | $\beta_{\rm min}$ |
|-------|-------------|-----------------|---------------|-------------------|-------------------|
| C2S   | C400        | $2.26(g/cm^3)$  | 100 (years)   | $9.57~(\mu m)$    | 0.62              |
| C2L   | C400        | $2.26(g/cm^3)$  | 100 (years)   | $14.04 \ (\mu m)$ | 0.42              |
| C3S   | C400        | $2.26(g/cm^3)$  | 1000 (years)  | $9.57~(\mu m)$    | 0.62              |
| C3L   | C400        | $2.26(g/cm^3)$  | 1000 (years)  | $14.04 \ (\mu m)$ | 0.42              |
| Mg2S  | $MgFeSiO_4$ | $3.3(g/cm^3)$   | 100 (years)   | $9.57~(\mu m)$    | 0.28              |
| Mg2L  | $MgFeSiO_4$ | $3.3(g/cm^{3})$ | 100 (years)   | $14.04 \ (\mu m)$ | 0.19              |
| Mg3S  | $MgFeSiO_4$ | $3.3(g/cm^{3})$ | 1000 (years)  | $9.57~(\mu m)$    | 0.28              |
| Mg3L  | $MgFeSiO_4$ | $3.3(g/cm^3)$   | 1000 (years)  | $14.04 \ (\mu m)$ | 0.19              |

### The Grain Number Percentage

| Model      | smaller grains ( $\beta \ge 0.5$ ) | larger grains ( $\beta < 0.5$ ) |
|------------|------------------------------------|---------------------------------|
| C2S, C3S   | 100%                               | 0%                              |
| C2L, C3L   | 99.93%                             | 0.07%                           |
| Mg2S, Mg3S | 99.03%                             | 0.97%                           |
| Mg2L, Mg3L | 98.88%                             | 1.12%                           |

















## Remarks on blowing-out picture

- The self-consistent dynamical model can be constructed for the blowing-out picture
- Model C2S gives the best fit to 1/R profile
- Because the average grain size is smaller
- And the new grains are generated frequently enough
- Generating new grains every 1000 years cannot maintain 1/R profile

## The Signature of Planets

- We also did cases when a planet is added
- No signature of planet in a continuous outmoving dust flow
- The signature is obvious when the dust grain is long-lived
- The planet can be hidden in debris discs !









### Two Clumps (Holland et al. 1998)



# Small Grains from One Collision (Wyatt 2006)



### The Vega Puzzle

- Dominated by small grains ?
- Axis-symmetric ?
- The mass budget problem ?
- A recent collision and its cascade ?
- Spiral feature ?

### The Recent Work

- Two clumps rotate with a planet
- Assume collisions happen within two clumps
- Planetesimals within the clumps might collide with others, produce small grains

t=100





t=50





### Remarks

- We are producing more realistic results than those in Jiang & Yeh (2009)
- A model which can solve the Vega Puzzle might exist
- Further advanced observations will be important

### Thank You