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€ Kuiper belt objects (KBOs): Classical and Resonant
KBOs (Plutinos If 2:3)
€ Scattered disk objects
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Largest known trans-Neptunian objects (TNOs)
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Distant EKOS --- The Kuiper Belt E-Newsletter

(http://www.boulder.swri.edu/ekonews/)

As of 2009/10

Current number of TNOs: 1097 (and Pluto)
Current number of Centaurs/SDOs: 248

Current number of Neptune Trojans: 6

Out of a total of 1351 objects:
554 have measurements from only one opposition

538 of those have had no measurements for more than a year
288 of those have arcs shorter than 10 days
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HST/ACS with 22 ks per
pointing found 3 KBOs,
with the faintest of 28.3
mag, corresponding to a
size of 25 km!

Deficit in both large and
small bodies

Classical KB and Excited
KB are different

CKBOs mostly 100 km
bodies with a second peak
<10 km

Largest EKBOs=Pluto

Burnstein et al. (2004)
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Fig. 17.—The unbiased KBP inclination distribution as a function of KBO
classification. The fraction of objects in the sample per degree of inclination is
the same as Fig. 16, with each bin shaded to reflect the proportion of objects
by classification. Unclassified objects are represented by open areas, Resonant
objects are light gray, Scattered ( Near and Extended) objects are dark gray,
and Classical objects are black. The low-inclination “core™ is primarily com-
posed of Classical objects, while the higher inclination “halo™ is primarily
Scattered objects. Along the KBP inclination axis, the boundary between
Classical and Scattered objects is not distinct.

Statistical
studies now
become possible

A deficit at
small-size
end?

Distinctly
different
populations!

Elliot et
) al. 2005 >
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The TAOS (Taiwan-America
Occultation Survey) project, a novel
telescope array set up by groups from
Taiwan, US and Korea, began routine

- - Comet nuclei too faint to
observatlo_ns In early 20(_)5 and has be detected by direct
the potential to make unique imaging may be “seen”
when they move in front of

contribution to the knowledge of our | 4 packground star — a
So|ar System. stellar occultation event.

I
-t—Inner Solar System{(%l(ulper Belt -|-. Distant Stars——»
/

As the comet passes in front of the star,
it blinks out for ~0.2 seconds




Project Overview
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Census of the small objects In the solar-system family

An array of wide-field telescopes (D=50 cm, /1.9,
FOV=3 sqg. deg) to monitor brightness changes of ~1,000
stars at 5 Hz rate

Looking for a ‘blink’ of starlight (occultation) when an
object (> 2 km) moves in front of a distant star
~requency of events =» population of “interveners”

Data rate a few 100 GB per night; only “interesting” data
downloaded via the dedicated E1 connection

Real-time data analysis (light curves, statistics)

Requiring coincidence detection of the same event by all
telescopes to guard against false positive




TAOS will detect KBOs by stellar occultation
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TAOS Telescopes




Four telescope systems: 50 cm /1.9
Cassegrain by Torus, each equipped
with an SI1800 camera (2K x 2K
EEV) by Spectral Instruments



http://www.facebook.com/photo.php?pid=155492&id=100000148310896�

On a predicted event by an asteroid

2006 Feb 06 three TAQOS telescopes detected a
suspected occultation of TYC 076200961 (m,, ~
11.83) by (286) Iclea (m,, ~ 14.0 mag, D~ 97 km)

Stellar occultation by Asteroid (286) Iclea
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TAOS

Nominal Diameter at 42 AU (km)
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1 Competing mechanisms

ol
=1 1. accretion of

planetesimals to
form larger bodies,

| 2. grinding destruction

to smaller sizes

| =» Size distribution

KBO Population (Bernstein & Trilling 2004)



Event Detection ---
Rank Statistics
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quantify the light curve |
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e A true occultation event should have each of the four telescopes

the lowest rank in all telescopes
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=» low false rates

Ranking statistics
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FiG. 3.—Histogram of 5 for a light curve set implanted with a simulated
occultation by a 3 km KBO. Each light curve comprises 26,637 points and

the ranks from the three telescopes are found to be I, 3, and I. The event is
clearly visible at n = 29.47, and the probability of a rank product of 3 or
lower from random chance is P = 3.7 x 107", The overlaid dashed line is

the theoretical distribution of 5. The theoretical and implanted light curves

are shown 1in the inset, offset vertically for clarity.
Zhang et al. (2008)



Results by TAOS

In 2005-2006 more than several billion stellar
photometric measurements have been collected.

Of 2.4 x 10° rank triplets, no events were found.

This sets a stringent upper limit to the number
and size distribution of TNOs.

The limit can be estimated by the efficiency of
the survey, I.e., by the fraction of recovered
events artificially injected into observed light
curves (same noise, processed by the same
analysis pipelines).



Effective solid angle of the survey

Q,(D) = wp' 2, [Ejv,H,(D)/A]

J

where D: KBO diameter

Ej: duration of a light curve set
V- relative speed between KBO and Earth
Hj: event cross section
A: geocentric distance (= 43 AU, not sensitive)

wD: weight (fraction of injects in simulations)

The expected number of detected events by KBOs
with sizes ranging from D, to D, then is

dn
op L(D)D  density of KBOs (what we want)

F] dn/dD: differential surface number
I

D, ¢

Q.(D): survey sensitivity



The solid angle increases with size, whereas the
number of TNOs decreases with size.
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Figure 9. Effective solid angle vs. size for different distances from the TAOS

efficiency calculation. Wang et al. (2009)
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Figure 10. Plot of the product of the power-law size distribution (D /1 km)™9
and Qa(D, A) vs. diameter D at 100 AU, for several values of g. Note that D4
decreases with D, and £, increases with D). The product of these two terms is
an indicator of the sensitivity of the TAOS system.

For g=3, the TAOS sensitivity peaks at

D=3 km at A=100 AU Wang et al. (2009)



Setting N,,,, < 3; 1.e., any model with a size distribution
such that N > 3 Is Inconsistent with our data at 95%
confidence level.

Assuming a power-law distribution

dn/dD = ng(D/28 km) 4,
such that the cumulative size distribution 1s continuous at
28 km with the results of Bernstein et al. (2004).

Integration from D,=28 km to our detection limit of
D,=0.5 km with N,,=3, gives q=4.60.
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TAQOS looking for Sedna-like Objects

Instead of 1-2 data point drops, 1
look for shallow, but long, flux 2 ™| +—-— __4
reduction - large, Sedna-like % |
TNOs, or even inner Oort 2 os
cloud objects 2 o6 o
““80 190 200 210 220 230
time (sec)
"l

time (sec) tme (o) \Wang et al. (2009)



Running similar efficiency tests, with injected events
by large TNOs
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Figure 8. During the efficiency test, synthetic events were added into TAOS light curves. Examples of light curves with the synthetic events in three TAOS light curves
are shown in the upper part of each panel and the corresponding 5 values in the lower part of each panel. Some constants were added to second and third light curves
to separate them for clarity. The dotted lines are the 5 value for F < 1078, (a) 2 km, 200 AU, ¢ = 6828: (b) 3 km, 500 AU, ¢ = 4579; (¢) 5 km, 1000 AU, = 3474;
and (d) 10 km, 1000 AU, ¢ = 3474,
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Figure 11. Upper limits of number density with objects larger than 1 km for

various g and A. Any model with ng above the relevant line is ruled out at the
95% c.1.

dna(D) : N ( D )_q
A g — D[ ——
b km Wang et al. (2009)
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Figure 12. Upper limit on ng as a function of ¢ at 100 AU. The diagonal line
is the 95% upper limit set by the TAOS at 100 AU. The right axis shows the
corresponding upper limit on the total expected number of objects larger than
Sedna (Ng) in the whole sky, assuming an isotropic distribution. Given that one
Sedna actually exists, we can also set a lower limit on the surface density. If our

h]'\”[éopjlhl}‘ the 937% w1 which cortesponds 0 a value of Wang et al. (2009)
n, and g are constrained.
Since one Sedna has been found near 100 AU, q > 5.4 is excluded,
because it would have given too few large TNOs (at least 1 Sedna) or

too many small ones (1 km) to comply with the null TAOS results.




Conclusions

Stellar occultation offers the only possibility to
“detect” small (< 1 km) and distant TNOs.

The size distribution is presently unknown, but
the TAOS experiment shows a clear deficit of
small TNOs.

TAOS II, with 1.3 m telescopes and frame-
transfer CCDs (capable of 20 Hz sampling) In
preparation

—> fast duty cycle; resolved diffraction patterns

Space missions too (e.g., Whipple, Ocle Docle)
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