Workshop on MRI in Protoplanetary Disks 3rd June 2009, Kobe University, Kobe, Japan

Dust Motion in a Protoplanetary Disk in the Vicinity of an Embedded Planet

Takayuki Muto (Kyoto University)

In collaboration with Shu-ichiro Inutsuka (Nagoya University)

Introduction

- Analytic Investigation of Dust Motion around a low mass planet
- Application + Discussion

Dust distribution in a protoplanetary disk

- Dust motion/distribution in a disk
 - One clue of the presence/mass of an embedded planet (e.g., Kalas et al. 2008 and Chiang et al. 2008 for Fomalhaut debris disk)
 - Formation of the core of gas giant / rocky planet

Previous Numerical Study

- •Jupiter mass planet
- •Distribution at 20 orbits

Paardekooper 2006

This Work: Analytic Study

• Study low-mass planet case

Complementary to previous studies

- General analytic formula of the secular evolution of dust particle's semi-major axis
 - Arbitrary dust size (drag coefficient)
 - Non-axisymmetric gas structure is taken into account
- Application: Long-term evolution of dust particle distribution

- Introduction
- Analytic Investigation of Dust Motion around a low mass planet
- Application + Discussion

Problem Setup

 How does the dust particle's orbital semi-major axis evolve in the presence of gas + planet?

Basic equations of dust motion

• Consider a dust with semi-major axis close to the planet

V: drag coefficient (corresponds to dust size)←assumed to be constant

Approximations

- Laminar Disk
- No back reaction to the gas
- Impulse approximation (distant encounter)
- Dust particle is in a circular orbit initially

Derive **secular evolution** of semi-major axis of the particle

What we can **NOT** derive in this approx: **Resonance, close encounter, turbulence**

Gas effects considered

$$\mathbf{v}_{ ext{gas}} = \mathbf{v}_{ ext{Kepler}} + \delta \mathbf{v}$$

 $\delta \mathbf{v}$ includes:

- Effect of radial pressure gradient
- Axisymmetric radial flow
 - e.g., accretion flow
- Spiral density wave
 - Derived by 2nd order perturbation

Each contribution is calculated separately, and added up

Global pressure gradient

$$\delta \boldsymbol{v}_{\mathrm{g}} = \eta v_{\mathrm{p}} \boldsymbol{e}_{y} = \mathrm{const},$$

- Causes gas to rotate at non-Kepler velocity
- Semi-major axis evolution of dust particles:
 - Fastest for particles with $\Omega p^{\sim} \nu$
- "meter-size barrier" of planetesimal formation

$$\Delta b = 2\eta v_{\rm p} T \frac{\nu \Omega_{\rm p}}{\nu^2 + \Omega_{\rm p}^2},$$

Planet encounter

- Modification of gravitational scattering due to gas
 - Coincides with 3-body problem without gas for $\Omega_p >> v$
- Drag-induced attraction towards the planet
 - Peaks at $\Omega_p \sim v$

Gas flow modified by planet gravity

1st order, propto Mp

- Only 1st-order axisymmetric flow stracture contributes
- Axisymmetric mode and nonaxisymmetric contributions (spiral density wave) cancel when higher order terms are considered
 - Assumption: No vortensity formation

$$\Delta b = \operatorname{sgn}(b) \frac{4}{3} \frac{1}{b\Omega_{\rm p}} \frac{\nu \Omega_{\rm p}}{\nu^2 + \Omega_{\rm p}^2} L_y \overline{\delta v_y^{(1)}},$$

$$\overline{\delta v_y^{(1)}} = \frac{H^2 \Omega_{\rm p}}{2L_y} \frac{GM_{\rm p}}{Hc^2} \left[e^{-(x/H)} \mathrm{Ei}\left(\frac{x}{H}\right) - e^{x/H} \mathrm{Ei}\left(-\frac{x}{H}\right) \right].$$

2nd order, propto Mp²

Gas Effects on Particle Motion

cent. star		Planet location	
Pressure grad.	← *Depends on sign	*Depends on sign	
Radial gas flow	← *Depends on sign	← *Depends on sign	
Encounter with planet	→ ← direction change at intermediate distance	→ ← direction change at intermediate distance	
Spiral density wave	←	↓ ↓ →	

Semi-major axis change of the particle

Muto and Inutsuka, 2009

Radial velocity of the particle: example

Applicability of analytic formula

- Compare analytic results with numerical calculation
- Analytic results
 - well describe motions of particles with large drag
 - qualitatively good approx. of motions of particles with small drag

Validity diagram of the formula

Example of Semi-major Axis Evolution

 $\nu/\Omega p=1$

- Introduction
- Analytic Investigation of Dust Motion around a low mass planet
- Application + Discussion
 - Model of long-term evolution of dust particle distribution
 - Is it possible to detect a low-mass planet embedded in a disk?

Model of long-term evolution of dust particle distribution

1-dimensional model: only *radial* distribution

Easily follow the evolution of ~10⁶ years

Distribution of various size dust @ t=10⁶yr

Is it possible to detect a low-mass planet embedded in a disk?

- Gap width of ~H for ~0.1-1cm particles
 Local pressure gradient should be close to zero
- For $H/r_p=0.05$ and $3M_E@30AU$, gap with ~1-2AU
- 0.01" @ 100pc with λ>1cm
- Possibly at shorter wavelength if small particles are depleted.
- Maybe possible with ALMA, higher possibility with SKA?

Summary

- Analytic formula of dust particle's semi-major axis evolution is derived
- General results including the effects of
 - Embedded low-mass planet
 - Effect of radial pressure gradient
 - Axisymmetric accretion flow onto the central star
 - Spiral density wave
- Results with arbitrary dust size (stopping time)
 - The formula is especially useful for small particles
- Model of lomg-term evolution of dust surface density
 - Gap width with ~H
 - Direct imaging with ALMA/SKA can be used to detect an embedded low-mass planet (but very close to detection limit...)