# Giant Planet Formation in Magnetized Disk



# **Motivation**

## **350 exoplanets** almost all planets are **Gas Giant Planets**

- The formation process of gas giant planets is important for understanding the theoretical planet formation
- Gas giant planets are formed in the protoplanetary disk
- Recent Studies: 3D simulations
  - Not resolve (proto) planet (i.e., radius of gas planet)
  - Not include the magnetic effect
- This study
  - resolve the gas giant planet with
     Δx < r<sub>Jup</sub> (present Jovian radius)
  - include the magnetic effect
     (planet formation in protoplanetary
     disk with MRI turbulence)



# **Initial Settings**

Local Simulation around Protoplanet Basic equations (Resistive MHD eq.)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \ \mathbf{v}) = 0$$

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla P - \frac{1}{4\pi} \nabla \times (\mathbf{v} \times B)$$

$$- \nabla \varphi_{\text{eff}} - 2\Omega_{p} (z \times \mathbf{v})$$

$$\frac{\partial B}{\partial t} = \nabla \times (\mathbf{v} \times B) + \eta \Delta B$$

$$P = P(\rho)$$
Brotonlandton

Boundary Co ·x- fixed bou ·y- periodic k ·z- fixed bou

Size

$$\frac{-\nabla \varphi_{\text{eff}} - 2\Omega_{p}(z \times v)}{\partial B} = \nabla \times (v \times B) + \eta \Delta B$$
Protoplanetary Disk
P = P(p)
Roundary Condition
R- fixed boundary
Protoplanetary Disk
r=5.2 AU
r=5.2 A

y azimuthal

velocity shear



# Thermal evolution and Resistivity



Barotropic EOS (Mizuno 1978, Machida 2009)

*isothermal* far from the protoplanet *adiabatic* near the protoplanet
depends on the dust opacity

**Magnetic resistivity** 



 $\eta$  in the collapsing molecular cloud core (Nakano et al. 2002, Machida et al. 2006)

≽|x|<7h η=0 ≽|x|>7h η=η<sub>fiducial</sub>

to mimic dead zone (protoplanet exists in the active zone which is enclosed by the dead zone)



## Previous Study (unmagnetized case)

(Machida et al. 2008, Machida 2009)

### Large scale (I=1)



Spiral arms & Gap formation

Circum-planetary disk

Protoplanet system acquires the angular momentum from shearing motion in the protoplanetary disk

#### Small scale





2.0 x 10<sup>7</sup> km







## Channel flow in MRI turbulence

# Toroidal dominated field lines



## **Circumplanetary disk formation in MRI turbulence**



Protoplanet is located at the center of the simulation box

Circumplanetary disk formation in the MRI turbulent disk with low  $\beta$  ( $\beta$ ~1)

>The magnetic field significantly affects the circumplanetary disk formation

## **Circumplanetary disk formation in MRI turbulence**

## I=6, L<sub>box</sub>=0.38h, Resistive Model



- Circumplanetary disk acquires the angular momentum from MRI turbulence
- Toroidal dominated field
  - Gas flows into the Hill sphere along field lines
  - Inclined disk formation

Rotation axis of planetary system (planet and disk) is perpendicular to the protoplanetary disk normal



Circumplanetary disk has

- ✓ Ordered & vertical fields
- ✓ Strong B MRI stable

# No B vs. B

## Gas-planet and satellite formation under unmagnetized or magnetized disk

| <b>B</b> in disk                        | No <b>B</b> Model          | Low- <sup>β</sup> Model          | High-β Model                |
|-----------------------------------------|----------------------------|----------------------------------|-----------------------------|
| MRI                                     | No                         | No                               | Yes                         |
| Structure                               | Spiral                     | Spiral                           | Turbulence                  |
| Outflow                                 | No                         | Yes                              | ???                         |
| Gap                                     | Deep                       | Deep                             | More deep                   |
| M <sub>P</sub> /(M <sub>P</sub> /dt)*1  | ~10 <sup>4</sup> yr        | ~10⁵ yr                          | ~10 <sup>6</sup> yr?        |
| Satellite disk<br>(acquisition process) | Large<br>(shearing motion) | Compact<br>(transfer by outflow) | Compact<br>(turbulent flow) |
| <b>B</b> in satellite disk              | No                         | Strong                           | Strong                      |

\*1:  $M_P/(M_P/dt)$  is the growth timescale of the protoplanet (gas accretion timescale of the protoplanet)

# Summary & Discussion

### Giant planet formation in magnetized disks was investigated

- ➤using 3D simulations with higher-spatial resolution
- including the thermal and magnetic effects

#### MRI in the active zone

- >Turbulence and low- $\beta$  gas near the Hill sphere of protoplanet
- Deeper gap appears in the active zone

## **The protoplanet formation under low-** $\beta$ ( $\beta$ **~1**) environment

- Due to the deeper gap and turbulence, the growth timescale of the protoplanet becomes long (~10<sup>6</sup> yr)
- Inclined circumplanetary disk along toroidal field

### Satellite formation

- The circumplanetary disk (i.e., the site of the satellite formation) is stable against MRI, because of low- $\beta$  ( $\beta \sim 0.1$ )
- >The circumplanetary disk has a strong, ordered, poloidal field

Type I migration of satellites may be suppressed by Muto mechanism