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* |Introduction
* Analytic Investigation of Dust Motion around a
low mass planet

e Application + Discussion



Dust distribution in a protoplanetary disk

* Dust motion/distribution in a disk

— One clue of the presence/mass of an embedded planet (e.g.,
Kalas et al. 2008 and Chiang et al. 2008 for Fomalhaut debris disk)

— Formation of the core of gas giant / rocky planet

| Fomalhautb
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Previous Numerical Study
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This Work: Analytic Study

e Study low-mass planet case
— Complementary to previous studies

* General analytic formula of the secular evolution
of dust particle’s semi-major axis
— Arbitrary dust size (drag coefficient)

— Non-axisymmetric gas structure is taken into account

e Application: Long-term evolution of dust particle
distribution



* Analytic Investigation of Dust Motion around a
low mass planet



Problem Setup

* How does the dust particle’s orbital semi-major
axis evolve in the presence of gas + planet?

]

azimuthal

..................

........

[

Spiral density
WENE

Semi-major axis change?
D4« o




Basic equations of dust motion

* Consider a dust with semi-major axis close to the planet

— Hill approx + gas drag Planet gravity
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V: drag coefficient (corresponds to dust size)
€assumed to be constant



Approximations

* Laminar Disk
* No back reaction to the gas

* Impulse approximation (distant encounter)

* Dust particle is in a circular orbit initially

Derive secular evolution of semi-major
axis of the particle

What we can NOT derive in this approx:
Resonance, close encounter, turbulence



Gas effects considered

Vgas — VKepler + 0V

0V includes:
e Effect of radial pressure gradient

e Axisymmetric radial flow
— e.g., accretion flow

e Spiral density wave

— Derived by 2"d order perturbation

Each contribution is calculated
separately, and added up -2 8 2




Global pressure gradient
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* Causes gas to rotate at non- ‘

Kepler velocity
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* Semi-major axis evolution of <=
radial

dust particles:
— Fastest for particles with Qp~v

* “meter-size barrier” of
planetesimal formation
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Axisymmetric radial motion

Radial gas
accretion

0V, = (vp€e, = const.

e Gas accretion (or deccretion)

onto cent. star

* Semi-major axis evolution of

dust particles:

— Dust accretes onto the cent. star

for Qp<<v
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Planet encounter
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— Coincides with 3-body problem
without gas for Qp>>v

* Drag-induced attraction
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— Peaks at Qp™v
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Gas flow modified by planet gravity
OVg = v + §v(?)

15t order, propto Mp 2Md order, propto Mp®

* Only 1st-order axisymmetric flow
stracture contributes

e Axisymmetric mode and non-
axisymmetric contributions (spiral
density wave) cancel when higher
order terms are considered

— Assumption: No vortensity
formation
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Gas Effects on Particle Motion

Planet location

cent star
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Semi-major axis change of the particle
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The most general result for non-turbulent, non-self-gravitating gas disk

Muto and Inutsuka, 2009




Radial velocity of the particle: example
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Grav. attraction by the planet
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Grav. Scattering by the planet
Particles scat. away from the planet
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Applicability of analytic formula

 Compare analytic results with numerical
calculation

* Analytic results

— well describe motions of particles with large drag

— qualitatively good approx. of motions of particles
with small drag



Validity diagram of the formula
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Example of Semi-major Axis Evolution
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e Application + Discussion
— Model of long-term evolution of dust particle distribution

— Is it possible to detect a low-mass planet embedded in a
disk?



Model of long-term evolution of dust
particle distribution

1-dimensional model: only radial distribution

ON(t,b) 0O
o

w(B)N (1)) = 0

Dust radial velocity

Make use of the analytic results of
dust semi-major axis evolution

Easily follow the evolution of ~10° years



Distribution of various size dust @ t=10°yr
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s it possible to detect a low-mass
planet embedded in a disk?

Gap width of “H for ~0.1-1cm particles
— Local pressure gradient should be close to zero

For H/rp=0.05 and 3Me@30AU, gap with ~1-2AU
0.01” @ 100pc with A>1cm

Possibly at shorter wavelength if small particles
are depleted.

Maybe possible with ALMA, higher possibility with
SKA?



Summary

Analytic formula of dust particle’s semi-major axis
evolution is derived

General results including the effects of

— Embedded low-mass planet

— Effect of radial pressure gradient

— Axisymmetric accretion flow onto the central star
— Spiral density wave

Results with arbitrary dust size (stopping time)
— The formula is especially useful for small particles

Model of lomg-term evolution of dust surface density
— Gap width with ~H

— Direct imaging with ALMA/SKA can be used to detect an embedded
low-mass planet (but very close to detection limit...)





