Mid-Infrared Imaging and Spectroscopy of Dust Structures Periodically Formed Around WR140 based on Observations with Subaru/COMICS

Itsuki Sakon, Takashi Onaka, Ryou Ohsawa, Kentaro Asano (Univ. of Tokyo), Takaya Nozawa (IPMU), Takashi Kozasa (Hokkaido University), Takuya Fujiyoshi (NAOJ), Yoshiko Okamoto (Ibaraki University), Hirokazu Kataza (ISAS/JAXA), Hidehiro Kaneda (Nagoya University)
Dust formation by massive stars

SCIENTIFIC BACKGROUND

- Dust Formation by massive stars
 important to explore the origin of dust in the early universe
- How much amount of dust is formed in the ejecta of supernovae
- How much fraction of it can survive the circumstellar environment
- Can the dust be formed efficiently before the SN explosions and contribute
 as the budget of interstellar dust

(Dust formation by optical transients → Ohwasan’s talk)

- The amount of \(0.1M_{\text{solar}}/\text{SN}\) dust formation is needed to account for the dust
 content of high red-shift galaxies (Morgan & Edmunds 2003).
- The dust condensation in the ejecta of core-collapse SNe is theoretically
 suggested (Kozasa et al.1991; Todini & Ferrera 2001; Nozawa et al. 2003, 2010).

- Observational Evidence for the dust formation in SN ejecta
 - Type II SN2003gd; \(0.02M_{\text{solar}}\) (Sugerman et al. 2006) → \(4 \times 10^{-5}M_{\text{solar}}\) (Meikle et al. 2007)
 - Type II SN1987A ; \(7.5 \times 10^{-4}M_{\text{solar}}\) (Ercolano et al.2007)
 - Cas A ; \(0.003M_{\text{solar}}\) (Hines et al. 2004) or \(0.02-0.054M_{\text{solar}}\) (Rho et al. 2004)
 → much smaller amount of dust formation is suggested observationally
Introduction: Dust formation by SN2006jc

An Example of the Latest Results on the Dust Formation by Core-collapse SNe

AKARI/Infrared Camera (IRC) observations of SN2006jc in UGC4904

(a) Infrared (measured by AKARI satellite in Apr. 2007)

800K component; Newly formed dust in the ejecta of SN2006jc

\[T_{\text{hot.car.}} = 800 \pm 10 \text{ (K)} \]
\[M_{\text{hot.car.}} = 6.9 \pm 0.5 \times 10^{-5} M_{\odot} \]

300K component; pre-existing circumstellar dust

\[T_{\text{warm.car.}} = 320 \pm 10 \text{ (K)} \]
\[M_{\text{warm.car.}} = 2.7^{+0.7}_{-0.5} \times 10^{-3} M_{\odot} \]

The amount of newly formed dust is more than 3 orders of magnitudes smaller than the amount needed for a SN to contribute efficiently to the early-Universe dust budget.

Dust condensation in the mass loss wind associated with the prior events to the SN explosion could make a significant contribution to the dust formation by a massive stars.

NIR imaging of SN2008ax with AKARI/IRC on ~100 days

SN2008ax in NGC 4490 (d = 9.6Mpc; Pastorello et al. 2008)
Type IIb (Chornock et al. 2008) discovered by Mostardi et al. (2008) on 2008 Mar 3.45
-- the optical light curve similar to that of the He-rich Type IIb SNe 1996cb and 1993J
-- an OB/WR progenitor star (M_{ms} = 10-14M_{\odot}) in an interacting binary system

\(\rightarrow \) properties of the circumstellar dust shell
\(\rightarrow \) Possible dust formation in the SN ejecta

NIR imaging of SN2008ax with AKARI/IRC on ~100 days

\[T_{a,\text{car.}} = 767 \pm 45 \text{K}; \quad M_{a,\text{car.}} = 1.2^{+0.4}_{-0.3} \times 10^{-5} M_{\odot} \]
\[T_{a,\text{sil.}} = 885 \pm 60 \text{K}; \quad M_{a,\text{sil.}} = 6.8^{+2.5}_{-1.7} \times 10^{-5} M_{\odot} \]

Infrared light echo from the dust formed as a result of the WR binary activities
Dust formation by Wolf-Rayet Binaries

Dust Formation in the wind-wind collision of massive Wolf-Rayet binary systems

Wolf-Rayet stars; extremely luminous \((L > 10^5 L_\odot, T_{\text{eff}} \gg 20,000 \text{K})\)

- average mass-loss rate; \(\delta M \sim 10^{-5} M_\odot/\text{yr}\)
- terminal velocity; \(v_\infty \sim 1,000 - 4,500 \text{km/s}\)

Periodic dust formation in binary WC+O system with eccentric orbits

dust production rate; \(\delta M \sim 10^{-6} M_\odot/\text{yr}\) (van der Hucht et al. 1987; Williams 1995)

WR ‘dusters’ --- WR9, WR25, WR48a, WR76, WR80, WR95, WR98a, WR102e, WR106, WR121, WR125, WR137, WR140, etc (Marchenko & Moffat 2007; Wood et al. 2003)
Dust formation by WR140

WR140; long-period (\(P=7.93\text{y}\); Marchenko et al. 2003) colliding-wind WR binary (WC7 class Wolf-Rayet star + O4 type star) located at \(d\sim1.85\text{kpc}\)

“spectroscopic events” in 1993, 2001 and 2009

Observations; Cooled Mid-infrared Camera and Spectrometer (COMICS) / Subaru N- and Q-band imaging and low-resolution spectroscopy of WR140

1\(^{st}\) epoch; Aug. 2009 & 2\(^{nd}\) epoch Nov. 2009 & 3\(^{rd}\) epoch June 2010

12.5\(\mu\text{m}\) image of WR140 taken with Michelle/Gemini-North on Nov. – Dec. in 2003 (Marchenko & Moffat 2007).

11.7\(\mu\text{m}\) image of WR140 taken with COMICS/Subaru on 1\(^{st}\) Aug. in 2009 (Sakon et al. 2009).

→The expansion velocity of the dust shell; \(2.7\pm0.3 \times 10^3 \text{ km s}^{-1}\), consistent with Williams et al. 2009
Dust Structures around WR140
Revealed by Subaru/COMICS Observations

Subaru/COMICS N11.7 band (11.7\,\mu\text{m})

August in 2009
orbital phase $\phi=1.065$
Dust Structures around WR140
Revealed by Subaru/COMICS Observations

Subaru/COMICS N11.7 band (11.7µm)

November in 2009
orbital phase $\phi=1.097$
Dust Structures around WR140
Revealed by Subaru/COMICS Observations

Subaru/COMICS N11.7 band (11.7µm)

June in 2010
orbital phase φ=1.170
Properties of Dust formed during the 2001 periastron at $\phi=1.097$

The results of the photometry of dust shell formed during the 2001 periastron at the orbital phase of $\phi=1.107$ (9 Nov 2009)

N11.7(11.7\(\mu\)m) 0.21\(\pm\)0.02 mJy
Q17.7(17.7\(\mu\)m) 0.15\(\pm\)0.04 mJy

\[f_\nu^X (\lambda) = M_X \left(\frac{4}{3} \pi \rho_X a_X^3 \right)^{-1} \pi B_\nu(\lambda, T_X) Q_{X}^{abs}(\lambda) \left(\frac{a_X}{R} \right)^2 \]

\(X; \) amorphous carbon (\(X=\text{acar}\))
\(Q_{\text{acar}}^{abs}(\lambda); \) absorption cross section
(Colangeli et al. 1995)

\(\rho_{\text{acar}} = 1.87 \; (\text{g cm}^{-3})\)
\(\sigma_{\text{acar}} = 0.01 \mu\text{m}\)
\(R=1.85 \; \text{kpc}\)

temperature of amorphous carbon
\(T_{\text{acar}} = 350\pm60 \; \text{K}\)

total mass of amorphous carbon in the dust shell
\(M_{\text{acar}} = 0.99^{+0.35}_{-0.25} \times 10^{-8} \; \text{M}_\odot\)
The results of the photometry of dust shell formed during the 2001 periastron at the orbital phase of $\phi=1.170$ (June 2009)

- $N_{11.7}(11.7 \mu m) = 0.160 \pm 0.02$ mJy
- $Q_{17.7}(17.7 \mu m) = 0.125 \pm 0.04$ mJy

Temperature of amorphous carbon

$T_{acar} = 330 \pm 60$ K

Total mass of amorphous carbon

$M_{acar} = 0.95^{+0.35}_{-0.35} \times 10^{-8} M_\odot$
Properties of Dust formed during the 2001 periastron

The temperature of amorphous carbon at $\phi=1.097$ (9 Nov 2009); $T_{acar} = 350\pm60$ K

$\phi=1.170$ (4 Jun 2010); $T_{acar} = 330\pm60$ K

• Equations on the radiative equilibrium (Williams et al. 2009)

$$4\pi a^2 \bar{Q}_a(a, T_g) T_g^4 = \pi a^2 \bar{Q}_a(a, T_O) T_O^4 \left(\frac{R_O}{r}\right)^2 + \pi a^2 \bar{Q}_a(a, T_{WR}) T_{WR}^4 \left(\frac{R_{WR}}{r}\right)^2$$

$\bar{Q}_a(a, T)$; the Planck mean absorption cross-section

a; the radius of a dust grain

T_g; the temperature of a dust grain

r; the distance between the dust and either of the two stars (O-type star or WR star)

R_O, R_{WR}; effective radii of the O-type star and the WR star

T_O, T_{WR}; effective temperature of the O-type star and the WR star

• $\bar{Q}_a(a, T_g) \propto T_g^{1.2}$ holds for the amorphous carbon grains in the relevant temperature range

→ The radiative equilibrium grain temperature (T_g) is expected to decrease with distance from the stars as $T_g \propto r^{-2/5.2}$.

$T_g = 980$K at $\phi=0.039$ (Williams et al. 2009)

The obtained dust temperature of $T_g=350\pm60$K at $\phi=1.107$ is generally in good agreement with the expected relation of $T_g \propto r^{-2/5.2}$.
Properties of Dust formed during the 2001 periastron

total mass of amorphous carbon in the dust shell at $\phi=1.097$; $M_{\text{acar}} = 0.99^{+0.35}_{-0.35} \times 10^{-8} M_\odot$
$\phi=1.170$; $M_{\text{acar}} = 0.90^{+0.4}_{-0.4} \times 10^{-8} M_\odot$

(Williams et al. 2009; assuming $T_g \propto r^{0.38}$)

<table>
<thead>
<tr>
<th>Orbital Phase</th>
<th>M_{acar} (M_\odot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>2×10^{-8}</td>
</tr>
<tr>
<td>0.02</td>
<td>3×10^{-8}</td>
</tr>
<tr>
<td>0.12</td>
<td>6×10^{-8}</td>
</tr>
<tr>
<td>0.14</td>
<td>6.5×10^{-8}</td>
</tr>
<tr>
<td>0.56</td>
<td>$< 2 \times 10^{-8}$</td>
</tr>
</tbody>
</table>

(this study)

<table>
<thead>
<tr>
<th>Orbital Phase</th>
<th>M_{acar} (M_\odot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.097</td>
<td>$0.99^{+0.35}_{-0.35} \times 10^{-8}$</td>
</tr>
<tr>
<td>1.170</td>
<td>$0.90^{+0.4}_{-0.4} \times 10^{-8}$</td>
</tr>
</tbody>
</table>

Interpretations by Williams et al. (2009)

$0<\phi<0.03$; dust formation begins and new dust condenses

$0.03<\phi<0.12$; growth of recently formed grains at their equilibrium temperature

cf. typical size of dust grains in WR140 grow to 0.069μm (Marchenko et al. 2003)

$0.14<\phi$; the rate of destruction by thermal sputtering overtakes that of growth by implantation of carbon ions (Zubko 1998) and dust grains are destroyed

At most $1 \times 10^{-8} M_\odot$ of amorphous carbon dust survives at the orbital phase of $\phi=1.097$~1.170.
Summary

Near- to Mid-Infrared observations of SN2006jc and SN2008ax with AKARI/IRC
• The amount of newly formed dust is more than 3 orders of magnitudes smaller than the amount needed for a SN to contribute efficiently to the early-Universe dust budget.
• Dust condensation in the mass loss wind associated with the prior events to the SN explosion could make a significant contribution to the dust formation by a massive stars.

MIR observations of WR140 at the orbital phase of $\phi=1.097$ and 1.170 with Subaru/COMICS
• The expansion velocity of dust clouds is \sim2700km/s, consistent with Williams et al. (2009).
• Q-band imaging of dust structures at such later epoch was obtained for the first time.
 • The result of our photometry at 11.7μm and 17.7μm of dust structures formed around the WR140 during the previous periaston in 2001 is consistent with the presence of amorphous carbons of $T\sim350\pm60$K with the mass of $1\times10^{-8}M_\odot$ at the epoch of $\phi=1.097$ and $T\sim350\pm60$K with the mass of $0.9\times10^{-8}M_\odot$ at the epoch of $\phi=1.170$
→ In the case of WR140, $1\times10^{-8}M_\odot$ of amorphous carbon dust, at most, survives at the orbital phase of $\phi=1.097$ and 1.170.