第28回Grain Formation Workshop 平成22年度銀河のダスト研究会

東京大学柏極超音速 高エンタルピー風洞の紹介と 風洞を用いた氷天体大気圏突入の模擬実験

Department of Aeronautics and Astronautics Graduate School of Engineering

今村 宰 (東京大 工学系) 鈴木宏二郎(東京大 新領域)

Agenda

- 東京大学 柏キャンパス 極超音速高エンタル ピー風洞の紹介
 - 高速な流れ(M7, 60s)を再現する実験設備の紹介
- 極超音速風洞を用いた氷天体大気圏突入の 模擬試験
 - 航空宇宙工学における研究ツールの利用

風洞概観図

本風洞の沿革

- 1960年代初頭:旧東京大学航空研究所(現JAXA宇宙科学研究本部)によって、東大駒場Ⅱキャンパスに建設された超音速気流総合実験室/高温気流燃焼実験室が本設備の前身にあたる。
- 1989年:東京大学工学部に移管.
- 極超音速飛行体の教育および研究 活動の更なる拡充のため、柏キャンパス(新領域創成科学研究科)に 2006年移転。

本設備の理念

本設備は大学が有する研究設備であることから、

- 特に極超音速の気体力学のフロンティアの 研究活動
- 風洞実験等により極超音速を"体感"した経験をもつ人材を育成
- 航空宇宙工学の研究者・技術者に、より広く 極超音速飛行に関する実験の場を提供

風洞の作動原理

$$C_p T_0 = C_p T + \rho u^2/2$$

加熱器

Pebbles are heated by burner.

Air is heated by hot pebbles.

THE UNIVERSITY OF TOKYO

UT-Kashiwa Wind Tunnel

Measurement Room

風洞諸元

項目	極超音速風洞	燃焼風洞
設計マッハ数	7, 8	1.8 *
ノズル出口	200mm ϕ	40mm × 26mm *
淀み点圧力 🔑	最大1MPa	最大 0.7MPa
淀み点温度 7。	~800°C	最大1000°C
流量	最大 0.39kg/s	最大 1kg/s
通風時間	60 sec	100 sec
貯気槽	設計圧 5MPa(G), 容積 4m³ (×1)	
蓄熱体	アルミナペブル	
加熱方式	都市ガスバーナー	
排気	真空槽(7mφ 球 形タンク)	大気開放(排気消音 塔を経由)

₇ 燃焼風洞は ノズルも含めて ユーザーに任さ れている。

世界の極超音速風洞との比較

最大レイノルズ数 Re_D 1.8~4.7×10⁵

風洞の特徴

- 短い通風実験のインターバル(1 blow/hour)
- 安価な運用コスト
- 極超音速を「体感」した人材育成

- JAXAなどのプロジェクトに用いられるような大型設備に対して、「アイディア」を試す機会を提供.
- 航空宇宙工学の専門家以外の方の参画も大歓迎.

Core of flow

Uniformity of flow

Reynolds Number vs. stagnation heat flux

研究の動機

天体の大気圏突入には...

大気の形成 生命前駆物質の材料/エネルギーの供給源 生命の惑星間移動 など

突入の軌道は? アブレーションや分裂の効果は? 天体周りの高温高速の流れは?

惑星科学における極超音速熱空気力学に 航空宇宙工学における研究ツール(風洞, CFD, etc.)が利用できるのはないか?

Reaction

region

研究背景

天体の大気圏突入は、大気の形 成や生命の前駆体物質の生成に 関係しているという報告がある.

- •突入の軌道は?
- •アブレーションや分裂の効果は?
- •天体周りの高温高速の流れは?

primeval atmosphere

Frozen region

Model Comet?

atmosphere

Background

- Ablation engineering
 - a simple Thermal Protection System, and good reliability against aerodynamic heating during the reentry to the atmosphere
 - phenomenon itself contains the melting, phase-change and it is very complex.
- Ablation astrology
 - observed on the astrological object such as meteorite (tektite, etc...)
 - It is recently said that reentry of astrological objects is has a important role of origin of life, because it can provide high temperature condition to form the organic matter.

数值計算例

はやぶさカプセルの熱シールド(アブレーション)解析コードの転用

28 species model: N2, O2, N, O, NO, NO+, e-, N+, O+, N2+, O2+, C, C2, C3, CO2, CO, CN, CO+, C+, H, H2, HCN, HCO, C2H2, C2H, CH, H2O, OH

normalizedby shock standoff distance

N2,O2大気中での CFRPアブレーション CO2, N2大気中での H2Oアブレーション

Model of Ice and sting

衝撃波,空力加熱,相変化...等を伴う複雑な現象.

⇒ まずは極超音速風洞実験による観察が有効.

Water Ice (40mm dia.)

Ice piece in a hypersonic flow

Behavior of Ice ablation

FLOW

High speed movie 600x(real time)

Frontal view

Schlieren movie

Schlieren photographs

20 s 25 s

Shape change of icy body

Shape change of front part

Volume loss of front part

Time after the model injection, s

Drag Coefficient

Results of IR camera

Temperature inside the ice body

Time after the model injection, s

Photographs from rear side

コアの影響

- ・コアの有無の影響
- 熱容量,熱伝導性の影響?

氷の質の影響

T0=820-900K P0=0.95MPa

P0=0.95MPa, T0=850-920K

軽石状の氷 (空隙率約18%)

まとめ

航空宇宙工学における大気圏突入極超音速流に関する研究ツール(風洞実験,熱化学反応CFD)の利用

- 大気圏突入天体の空力特性、飛行軌道
- ・地表との衝突確率や条件
- •アブレーションによる天体成分の大気中へのバラまき

さらには

- •惑星大気の形成
- ・生命関連化学物質の進化 など惑星科学へ役立てる可能性はないか。

東京大学柏キャンパス 極超音速高エンタルピー風洞 (柏 極超 で <mark>検索</mark>)

