Ia型超新星爆発時ににおけるダスト形成

野沢 貴也
東京大学数物連携宇宙研究機構（IPMU）

共同研究者
前田啓一(IPMU), 野本憲一(IPMU/東大), 小笹隆司(北大)
1-1. Introduction

Type Ia SNe

- thermonuclear explosion of a C+O WD with the mass close to Chandrasekhar limit
 - subsonic deflagration?
 - supersonic (delayed) detonation?

- eject a significant amount of Fe-peak and intermediate elements such as Si, S, and Ca
 → play a role in the cosmic chemical evolution

- abundant metals in SNe Ia → dust can form?
 Type II SN : 0.1-1 M_{sun} (from theories)
 $> 10^{-4} M_{\text{sun}}$ (from observations)
1-2. Dust in Type Ia SNe

Dust formation in SNe Ia

- SNe Ia may form a significant amount of Fe grains (e.g., Dwek 1998)
- presolar SiC grains in meteorites may be produced in SNe Ia to account for their isotopic signatures (Clayton et al. 1997)
- no clear decrease of light curve by dust absorption
- no IR dust emission as well as CO molecules
 SN 2003hv, SN 2005bv at 100-300 days (Gerardy et al. 2007)
- no detection of ejecta-dust in Tycho SNR (e.g., Douvion et al. 2001)
1-3. Aim of our study

- Is it possible for dust grains to condense in the ejecta of Type Ia SN?

- What is the difference in formation process of dust between SNe Ia and SNe II?
 - chemical composition, size, and mass of newly formed dust
 - dependence of dust formation process on types of SNe
 - implication on nuclear burning in SNe Ia
2-1. Calculation of dust formation

- nucleation and grain growth theory (Nozawa et al. 2003)

steady-state nucleation rate

\[J_j^s(t) = \alpha_{sj} \Omega_j \left(\frac{2\sigma_j}{\pi m_{1j}} \right)^{1/2} \left(\frac{T}{T_d} \right)^{1/2} \Pi_j c_{1j}^2 \exp \left[-\frac{4}{27} \frac{\mu_j^3}{(\ln S_j)^2} \right], \]

grain growth rate

\[\frac{\partial r}{\partial t} = \alpha_s \frac{4\pi a_0^3}{3} \left(\frac{kT}{2\pi m_1} \right)^{1/2} c_1(t) = \frac{1}{3} a_0 \tau_{coll}^{-1} \]

- key species:
 a gas species with the least collision frequency among reactants

- **sticking probability;** \(\alpha_s = 1, 0.1, 0.01 \)

- **\(T_{dust} = T_{gas} \)** (dust temperature is the same as that of gas)
2-2. Dust formation calculation for SN Ia

O Type Ia SN model

W7 model (C-deflagration)
(Nomoto et al. 1984)

- \(M_{\text{eje}} = 1.32 \ M_{\odot} \)
- \(E_{51} = 1.3 \)
- \(M^{(56\text{Ni})} = 0.56 \ M_{\odot} \)

- **onion-like composition**
 (no mixing of elements)
- **formation efficiency of CO and SiO ➔ 0 or 1**

\[
\begin{align*}
\frac{C}{O} > 1 & \rightarrow \text{all O atoms are locked into CO} \\
\frac{C}{O} < 1 & \rightarrow \text{all C atoms are locked into CO} \\
\frac{Si}{O} < 1 & \rightarrow \text{all Si atoms are locked into SiO}
\end{align*}
\]
3-1. Condensation time of dust

- Various species of dust condense in each layer
- species of dust depends on formation of molecules
- condensation time of dust : 100-300 days
3-2. Average radii of dust

- average radius of Fe and Ni : \(\sim 0.01 \) \(\mu \)m
- average radius of other dust species : \(< 0.01 \) \(\mu \)m

because of low density of gas in the expanding ejecta
3-4. Mass of dust formed in SN Ia

<table>
<thead>
<tr>
<th>dust species</th>
<th>A1</th>
<th>A0.1</th>
<th>A0.01</th>
<th>B1</th>
<th>B0.1</th>
<th>B0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.00 × 10⁻²</td>
<td>1.15 × 10⁻³</td>
<td>5.10 × 10⁻⁷</td>
<td>2.89 × 10⁻²</td>
<td>1.84 × 10⁻²</td>
<td>1.98 × 10⁻⁴</td>
</tr>
<tr>
<td>MgO</td>
<td>4.32 × 10⁻⁶</td>
<td>2.35 × 10⁻⁹</td>
<td>7.70 × 10⁻¹²</td>
<td>9.49 × 10⁻⁶</td>
<td>2.64 × 10⁻⁹</td>
<td>8.09 × 10⁻¹²</td>
</tr>
<tr>
<td>MgSiO₃</td>
<td>8.18 × 10⁻³</td>
<td>1.48 × 10⁻⁶</td>
<td>1.59 × 10⁻⁹</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mg₂SiO₄</td>
<td>7.32 × 10⁻³</td>
<td>1.66 × 10⁻⁶</td>
<td>2.46 × 10⁻⁹</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SiO₂</td>
<td>1.46 × 10⁻²</td>
<td>1.01 × 10⁻⁵</td>
<td>5.16 × 10⁻⁹</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.07 × 10⁻⁶</td>
<td>9.25 × 10⁻¹⁰</td>
<td>6.07 × 10⁻¹²</td>
<td>1.16 × 10⁻⁶</td>
<td>9.63 × 10⁻¹⁰</td>
<td>6.25 × 10⁻¹²</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>3.34 × 10⁻⁷</td>
<td>3.11 × 10⁻¹³</td>
<td>2.99 × 10⁻¹⁵</td>
<td>4.09 × 10⁻⁷</td>
<td>6.37 × 10⁻¹⁰</td>
<td>4.86 × 10⁻¹²</td>
</tr>
<tr>
<td>FeO</td>
<td>5.33 × 10⁻¹⁰</td>
<td>7.16 × 10⁻¹⁴</td>
<td>6.95 × 10⁻¹⁶</td>
<td>6.96 × 10⁻⁸</td>
<td>1.50 × 10⁻¹⁰</td>
<td>1.22 × 10⁻¹²</td>
</tr>
<tr>
<td>FeS</td>
<td>1.66 × 10⁻²</td>
<td>1.45 × 10⁻⁵</td>
<td>1.34 × 10⁻⁸</td>
<td>1.66 × 10⁻²</td>
<td>1.45 × 10⁻⁵</td>
<td>1.34 × 10⁻⁸</td>
</tr>
<tr>
<td>Si</td>
<td>6.13 × 10⁻²</td>
<td>3.15 × 10⁻⁵</td>
<td>2.23 × 10⁻⁸</td>
<td>6.48 × 10⁻²</td>
<td>3.23 × 10⁻⁵</td>
<td>2.38 × 10⁻⁸</td>
</tr>
<tr>
<td>Fe</td>
<td>1.43 × 10⁻⁴</td>
<td>1.63 × 10⁻⁸</td>
<td>4.39 × 10⁻¹²</td>
<td>1.43 × 10⁻⁴</td>
<td>1.63 × 10⁻⁸</td>
<td>4.39 × 10⁻¹²</td>
</tr>
<tr>
<td>Ni</td>
<td>7.28 × 10⁻⁶</td>
<td>9.73 × 10⁻¹⁰</td>
<td>5.60 × 10⁻¹³</td>
<td>7.28 × 10⁻⁶</td>
<td>9.73 × 10⁻¹⁰</td>
<td>5.60 × 10⁻¹³</td>
</tr>
<tr>
<td>Total</td>
<td>1.28 × 10⁻¹</td>
<td>1.21 × 10⁻³</td>
<td>5.55 × 10⁻⁷</td>
<td>1.10 × 10⁻¹</td>
<td>1.84 × 10⁻²</td>
<td>1.98 × 10⁻⁴</td>
</tr>
</tbody>
</table>

- **Total mass of dust formed in SNe Ia**: $M_{dust} < 0.13 \, M_{\odot}$
- Fe and SiC grains cannot condense significantly
4-1. Optical depth by dust

For $\alpha_s=1$,

$\tau(0.55) \sim 200$ at 300 days
$\tau(0.55) \sim 100$ by C grains
$\tau(0.55) \sim 100$ by Si and FeS
\Rightarrow too high to be consistent with observations

early formation of dust \Rightarrow 100-300 days
high $M(^{56}\text{Ni})$ \Rightarrow $\sim 0.6\ M_\odot$

\Rightarrow Can newly formed dust survive against strong radiation field in the ejecta?
4-2. Dust temperature

\[4\pi a^2 \sigma_B T_d(r)^4 \langle Q_\lambda(a, T_d) \rangle = \frac{F(r)}{\sigma_B T_{BB}^4} \int \pi a^2 Q_\lambda(a) B_\lambda(T_{BB}) d\lambda \]

- \(T_d(r) \): equilibrium temperature of dust at a position \(r \)
- \(F(r) \): flux at a position \(r \)
- (radiating as a blackbody with \(T_{BB} = 5000K \))
- \(\langle Q_\lambda(a, T_d) \rangle \): Plank-\(a \)

\[F(r) = \frac{L}{4 \pi r^2} \]
4-3. Mass of dust survived

Mass of dust formed

<table>
<thead>
<tr>
<th>dust species</th>
<th>$M_{1,d,j} \ (M_\odot)$</th>
<th>$M_{2,d,j} \ (M_\odot)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.00×10^{-2}</td>
<td>2.00×10^{-2}</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>1.07×10^{-6}</td>
<td>1.07×10^{-6}</td>
</tr>
<tr>
<td>Mg$_2$SiO$_4$</td>
<td>7.32×10^{-3}</td>
<td>7.32×10^{-3}</td>
</tr>
<tr>
<td>MgSiO$_3$</td>
<td>8.18×10^{-3}</td>
<td>8.18×10^{-3}</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>1.46×10^{-2}</td>
<td>1.46×10^{-2}</td>
</tr>
<tr>
<td>MgO</td>
<td>4.32×10^{-6}</td>
<td>4.32×10^{-6}</td>
</tr>
<tr>
<td>FeS</td>
<td>1.66×10^{-2}</td>
<td>3.63×10^{-4}</td>
</tr>
<tr>
<td>Si</td>
<td>6.13×10^{-2}</td>
<td>1.38×10^{-7}</td>
</tr>
<tr>
<td>Fe</td>
<td>1.43×10^{-4}</td>
<td>7.72×10^{-6}</td>
</tr>
<tr>
<td>Ni</td>
<td>7.28×10^{-6}</td>
<td>—</td>
</tr>
<tr>
<td>total</td>
<td>1.28×10^{-1}</td>
<td>5.01×10^{-2}</td>
</tr>
</tbody>
</table>

There is no evidence that C has been detected in SN Ia

If we ignore C grains in SN Ia

$$M_{\text{dust}} \sim 0.03 \ M_{\odot} \ (\text{silicate})$$

$$\tau(0.55) \sim 1 \text{ at 300 day}$$
Summary

1) Dust formed in the ejecta of SNe Ia
 - various grain species with average radius: $< 0.01 \mu m$
 - upper limit of total dust mass: $\sim 0.13 \, M_{\odot}$

2) Strong radiation field in the ejecta of SNe Ia
 - destroy most of FeS and Si but not C and silicate
 - dust mass: $< 0.05 \, M_{\odot}$

3) Formation of C grains is inconsistent with observations
 - preexisting C should be burned by nuclear burning
 - absence of C layer
 - dust mass: $< 0.03 \, M_{\odot}$

4) Newly formed dust grains of $< 0.01 \mu m$ may not be able to survive the reverse shock due to their small radii
 (Nozawa et al. submitted, arXiv/0909.4145)