中間赤外線によるデブリ円盤の観測 ー「あかり」による温かいデブリ円盤探査 ー ー追観測によるデブリダストの性質の解明ー

○藤原英明、尾中敬(東京大学)、

石原大助(名古屋大学)、あかりVEGADチーム

•「あかり」IRC全天サーベイデータに基づき、中間赤外線超過を示す温かいデブリ円盤の探査を行った

•これまでに25天体検出、うち9天体が新たなデブリ円盤候補

•Subaru, Gemini-S, Spitzerによる追観測

- (F3V,2Gyr)をSpitzer/IRSで分光観測(5-35μm)
- •年齢に対して極めて大きな超過
- •シリカ(SiO2)ダストの9,20μmフィーチャーを検出
- •岩石質(原始)惑星から放出された可能性を示唆

Introduction: Debris Disk

デブリ円盤

主系列星に見られる星周ダスト円盤 赤外線超過として検出 可視~近赤外線散乱光などで円盤構造 が検出されているものもある 起源

二次的に供給されたダスト

ダスト散逸タイムスケールを考えると原 始惑星系円盤ダストの生き残りではない 惑星形成後期に微惑星の衝突・破壊か 彗星状天体の昇華により供給? 惑星形成過程と深い関係? Fomalhaut: デブリ円盤+惑星

Introduction: Hot Debris Disk

 Cold Debris (Td<100K)</td>

 遠赤外線超過

 主系列星の~15%

 IRASで多く見つかっていた

 Warm Debris (Td~200K)

 中間赤外線超過

 主系列星の~2-3%??

 Hot Debris (Td>300K)

 10ミクロン超過

 主系列星の~1%??

Spitzer,「あかり」で見つかりだしてきた (e.g. Fujiwara+ 09, ApJ 695, L88) 惑星形成領域に存在 母天体の性質 惑星形成との関係 ダストフィーチャーの議論

AKARI/IRC 18µm Survey of Warm Debris Disks

Fujiwara+, in prep.

AKARI MIR All-Sky Survey

AKARI/IRC 9 &18 μm

AKARI 9µm all-sky image (Zodiacal light subtracted)

Band	S9W	L18W
Wavelength	6-12 micron	14-26 micron
Sensitivity	50 mJy	120 mJy
Resolution	9	.4"

- Peak of the thermal emission from warm dust grains (~200K) comes to ~ 10-20 micron
- AKARI/IRC is a powerful tool to search for hot debris disks

「あかり」IRCによるデブリ円盤サーベイ

- Cross-correlation ($\Delta r < 5$ ")
 - AKARI/IRC全天サーベイ点源カタログ
 - Tycho-2 SpT カタログ(Wright+ 2003)より光度階級Vの星
 - 2MASS
- 18µm超過を持つ主系列星の抽出
 - Ks-[18]カラーからempiricalに
 - スペクトル型毎にKs-[18]の分布の2 σ をしきい値に Threshold(2σ) = $\mu_{K_{\rm S}-[L18W]} + 2\sigma_{K_{\rm S}-[L18W]}$
- 目視によるチェック → 超過天体候補
- 既知のYSO, late-typeのチェック → デブリ候補

デブリサーベイ: Ks-[18]カラー

結果

光球成分の数十%以上の超過を示す天体の抽出に成功

-		-			
SpT	Input	Detection	Excess	Debris	Frequency
А	18232	196	21	11	0.056
\mathbf{F}	29766	324	12	10	0.031
G	14013	173	4	3	0.017
Κ	2122	144	2	1	0.007
Μ	76	19	4	0	0.000
Total	64209	856	43	25	0.029

- このうち、超過がこれまでに未報告のものが9天体
 - ただし(未報告の)YSOがまぎれているかもしれない

• デブリ円盤頻度にスペクトル型依存性?

「あかり」で検出したデブリ円盤の一部

Violent Debris Dust Ejection from a Rocky Planet around 2Gyr Star

Fujiwara+, submitted

Spitzerによる追観測

• Target:

- F3V主系列星
- Geneva-Copenhagen survey (Holmberg+ 2007)
 - Age=2.1Gyr, Teff=6300K, [Fe/H]=+0.8, d=55pc (Hipparcos)
 - Teff, [Fe/H], Ageは岡山HIDESの観測で確認
- あかりMIR全天サーベイにより9,18µmで大きな超過検出
- IRAS Faint Source Catalogでも超過が示唆 (Oudmaijer +1992)
- Spitzer宇宙望遠鏡/中間赤外線分光器IRSで追観測
 - SL,LLで観測 (R~100)
 - 波長精度は0.1µm以下

Results: IR Photometry

- Tab.: 中間赤外線でのフラックス (by AKARI/IRC & IRAS/FSC)
 - IRASの方が若干明るい ... ビームサイズの違い?
 - IRAS/FSC 60, 100µm/±upper limit
- Kuruczモデル(Teff=6500K, log g=+4.0) + 2MASS JHKsで光球フラックスを計算
- 超過成分
 - 9µmで光球予想フラックスの4倍
 - 18µmで8倍

	λ	$F_{ u}$	Instrument	Photosphere ^a	Significance, $\chi^{\rm b}$
	(μm)	(Jy)		(Jy)	
-	9	0.84 ± 0.06	AKARI/IRC	0.22	10.3
	12	1.05 ± 0.06	IRAS	0.12	15.5
	18	0.47 ± 0.07	AKARI/IRC	0.06	5.9
	25	0.43 ± 0.03	IRAS	0.03	13.3
	60	< 0.40	IRAS	0.005	
-	100	< 1.14	IRAS	0.002	

Results: NIR-FIR SED

Wavelength (µm)

Results: Dust Features

- Fig.: 光球成分を差し引き後のスペクトル
- フィーチャーのピークは9µm および20-21µm
 - 非晶質シリケイトのピークは
 9.3-9.7µmおよび17-18µm
 - シリケイトだけでは説明できない
 - シリカは9µm,20-21µmに
 フィーチャーを示す

シリカ

- シリカ(SiO₂)
 - Siを中心とする四面体構造が頂点のOを共有 しなががら無数につらなる構造
 - 例: quartz(石英)
 - 温度や圧力に応じて様々な構造(多形)
 - 10µm付近にSi-Oストレッチモード、20µm付近
 icO-Si-Oベンディングモードに由来するフィー
 チャー(シリケイトと同じ)
 - 星間ダストには見られない(Kemper+04)
 - 星間空間ではシリケイトがほとんど
 - Sargent+ 09 が T Tau 型星で検出(結晶質)

Results: Dust Features

超過成分スペクトルのモデル

 $F_{\text{exc},\nu}^{\text{mod}}(\lambda) = \Omega_{\text{BB}}B_{\nu}(\lambda, T_{\text{BB}}) + a_{\text{silicate}}\kappa_{\text{silicate}}B_{\nu}(\lambda, T_{\text{silicate}}) + a_{\text{silica}}\kappa_{\text{silica}}B_{\nu}(\lambda, T_{\text{silica}})$ blackbody シリケイト シリカ

- シリケイト: 1.5µmサイズの非晶質パイロキシン (Mg_{0.5}Fe_{0.5}SiO₃)
 - 太陽系/原始惑星系円盤では普遍的なダスト
 - 質量吸収係数は Dorschner+ 95 の光学定数からMieで計算
- シリカ: 非晶質(溶融)石英 (by Koike+89)
 - Koike+ 89 の光学定数からCDEで計算

Results: Dust Features

- 1.5µm-sized pyroxene と非晶質石
 英の組み合わせで非常に良く再現
- blackbodyからの寄与が最大
- ダスト温度はTd=500-700K (誤差 10%程度)
- Pyroxene 対 Silica の質量比 = 0.6:0.4

Table 2: Best-fit parameters.

Parameter		Best-fit value
temperature of blackbody	$T_{\rm BB}$	505 K
solid angle of blackbody	Ω_{BB}	$2.34 \times 10^{-16} \text{ str}$
temperature of silicate	T_{silicate}	725 K
weight parameter of silicate	a_{silicate}	$1.05 \times 10^{-20} \text{ g} \cdot \text{str} \cdot \text{cm}^{-2}$
temperature of silica	$T_{\rm silica}$	605 K
weight parameter of silica	$a_{\rm silica}$	$7.53\times10^{-21}~{\rm g\cdot str\cdot cm^{-2}}$
resultant χ^2_{ν}		6.06

Results: Dust Features

- ダスト温度Td=500-700Kは R=0.6-0.8AUに相当
- パイロキシン+シリカダスト質量 M_{dust}=5x10¹⁷kg~10⁻⁷M_{Earth}
 ただし下限値
- シリカはUV~可視での吸収率が極めて低い
 - 高温で存在するためには、他のダスト
 種と接触している必要がある

Results: Fractional Luminosity

- : $f=L_d/L_*=5x10^{-3}$
- 小惑星同士の定常的な衝突破 壊によるデブリ円盤進化モデル (Wyatt+06)
 - 典型的なパラメタでのFLの最大値 $f_{\text{max}} = 0.16 \times 10^{-3} R_{\text{dust}}^{-7/3} M_*^{-5/6} L_*^{-0.5} t_{\text{age}}^{-1}$
 - − ~ a few x 10⁻⁸
- はるかに大きな(x10⁵!!)超過
- Transient なダスト生成現象を 考える必要がある
 - Late Heavy Bombardment ?
 - しかし2Gyrでは惑星形成は終了しているはず!

Discussion

- 宇宙におけるシリカ
 - 星間空間では未検出(Kemper+04)
 - いくつかのTTSsで検出 結晶質 (Sargent+ 09)
 - 太陽系天体でも検出
 - コンドライト(Dodd+81) 結晶質
 - Wild2/STARDUST 結晶質 (Zolensky+ 06)
 - ・ 地球の造岩鉱物 非晶質,結晶質
 - デブリ円盤
 - HD172555(A5V,12Myr; Lisse+ 09)
 - HD23514(G0,100Myr; Rhee+ 08)?

Discussion

- ,HD172555でシリカ検出
 - HD23514もおそらく
 - 原始惑星系円盤->デブリ円盤->惑星
 系(太陽系)の全てのフェーズにシリ
 カ検出
- 惑星系形成プロセスにおいて はシリカは実は普遍的?
- シリカが検出されたデブリ円盤
 にはすべて高温ダスト(>200K)
 - 中心星のごく近傍に存在しダストが
 十分に温められるケースでのみ観測
 される?

Discussion:シリカ生成過程

- 原始惑星系円盤(TTS): Sargent+ 09で議論
 - Faban+ 2000: エンスタタイトのレーザー加熱実験
 - エンスタタイトから小さなSiO2 smoke 粒子が生成
 - ショック加熱など平衡状態を経ない加熱により、円盤内で生成
 - 高温低圧下生成物tridymite,cristobalite(結晶質)様のものが主
- デブリ円盤
 - 高温低圧下生成シリカはminor (12.6µmフィーチャの欠如)
 - しかも、ダスト全体として金属がdepleteしている
 - 原始惑星系円盤と同じメカニズムを考えるのは厳しい
- 集積、内部分化した(原始)惑星の表面(地殻)で石英生成、
 天体の高速衝突などにより放出された可能性
 - 地球表層には多量の石英(花崗岩), tridymite, cristobaliteは少ない
 - 極めて大きなLuminosity Fraction、SiOガスフィーチャも傍証

まとめ

- 主系列星 にシリカ(非晶質石英)ダスト フィーチャーを検出
 - 原始惑星系円盤と太陽系との間を埋める存在
- 非常に大きなfractional luminosity
 - Transient event
- 岩石質惑星起源のダストの可能性
 - R~0.6-0.8AUに岩石質惑星?
- ごく最近に高速衝突現象か
 - しかも2Gyrの星で!

- 太陽系における衝突現象との関連?
 - クレーター、SL9、水星の密度の高さ、...

ダストをトラップする機構

- 放射圧 (Meyer+ 04)
- $\beta = F_{rad}/F_{grav}$ ~(0.4µm/a)(2.7g/cm3/ ρ)(L_{star}/M_{star})

~1.1

- a=1 μ m, ρ =2.7, L_{star}=3.9L_{sun}, M_{star}=1.4M_{sun}
- μmサイズのダストは放射圧ですぐに飛ばされるはず
- 観測確率を考えると、ダストを星周にトラップし、寿命を長引かせる機構 を考える必要がある?
 - 羊飼い衛星
 - 土星、天王星
 - 惑星のresonant
 - ・ 地球との共鳴による "Cirucumsolar Dust Ring" の発見 (Reach+ 95)