Development of DESTINY⁺ Dust Analyser

Takayuki Hirai¹, Masanori Kobayashi¹, Tomoko Arai¹, Hiroshi Kimura¹, Jonas Simolka², Jan Gläser², Heiko Struck², Stephan Ingerl², Ralf Srama², Carsten Wagner³, Tobias Disch³, Carsten Henselowsky⁴, and DESTINY+ project

¹PERC, Chiba Institute of Technology, Japan, ²University of Stuttgart, Germany, ³von Hoerner & Sulger GmbH, Germany, ⁴DLR, Germany

DESTINY+ Dust Analyser (DDA) is an impact ionization dust analyser for the JAXA's DES-TINY+ spacecraft for an active asteroid, Phaethon, flyby mission. DDA will reveal the bulk chemical composition of interplanetary and interstellar dust particles and Phaethon ejecta particles by obtaining TOF mass spectra of positive ions generated by hypervelocity impact of dust particles. This presentation reports the development status of DDA. The performance test of the DDA engineering model (EM) with the electrostatic dust accelerator at the University of Stuttgart shows a remarkably higher mass resolution (m/dm) compared to its precursor model, CDA onboard Cassini spacecraft. The adjustment of the mechanical/thermal/electrical interface with the spacecraft system is about to finish. Some important designs for dust detection such as the position and the movable range of the DDA sensor head have been finalized. The flight model (FM) design will be finalized after Critical Design Review (CDR) and its manufacturing will be ongoing this summer.